建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx

上传人:b****6 文档编号:17599233 上传时间:2022-12-07 格式:DOCX 页数:34 大小:95.44KB
下载 相关 举报
建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx_第1页
第1页 / 共34页
建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx_第2页
第2页 / 共34页
建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx_第3页
第3页 / 共34页
建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx_第4页
第4页 / 共34页
建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx

《建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx(34页珍藏版)》请在冰豆网上搜索。

建筑给水排水毕业设计专业外文翻译Word格式文档下载.docx

Transientpropagation

Nomenclature

C+-

characteristicequations

c

wavespeed,m/s

D

branchorstackdiameter,m

f

frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dg

g

accelerationduetogravity,m/s2

K

losscoefficient

L

pipelength,m

p

airpressure,N/m2

t

time,s

u

meanairvelocity,m/s

x

distance,m

γ

ratiospecificheats

Δh

headloss,m

Δp

pressuredifference,N/m2

Δt

timestep,s

Δx

internodallength,m

ρ

density,kg/m3

Suffix

A

appliancesideoftrap

B

branch

local

conditionsatnode

T

trap

atm

atmosphericpressure

F

friction

R

room

S

systemsideoftrap

w

water

ArticleOutline

1.Introduction—airpressuretransientcontrolandsuppression

2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks

3.Roleofdiversityinsystemoperation

4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem

5.Simulationsignconventions

6.Waterdischargetothenetwork

7.Surchargeatbaseofstack1

8.Sewerimposedtransients

9.Trapsealoscillationandretention

10.Conclusion—viabilityofasealedbuildingdrainageandventsystem

Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer'

sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedtoatmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].

Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVsrepresentanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].

However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.

Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.

TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.

Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.

(39K)

Fig. 

1. 

Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.

Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.

ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001 

sand300 

mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthe

mechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].

Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.

Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.

Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackandoperableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.

ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],

(1)

(2)

Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.

(18K)

2. 

StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.Note

.

FortheC+characteristic:

(3)

when

(4)

andtheC-characteristic:

(5)

(6)

wherethewavespeedcisgivenby

c=(γp/ρ)0.5.

(7)

Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.Localpressureiscalculatedas

(8)

Suitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals,Table1.

Table 

1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1