三相异步电动机概要Word文件下载.docx
《三相异步电动机概要Word文件下载.docx》由会员分享,可在线阅读,更多相关《三相异步电动机概要Word文件下载.docx(17页珍藏版)》请在冰豆网上搜索。
③电源回路接点松动,接触电阻大;
④电动机负载过大或转子卡住;
⑤电源电压过低;
⑥小型电动机装配太紧或轴承内油脂过硬;
⑦轴承卡住。
①查明断点予以修复;
②检查绕组极性;
判断绕组末端是否正确;
③紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;
④减载或查出并消除机械故障,
⑤检查是还把规定的Δ接法误接为Y;
是否由于电源导线过细使压降过大,予以纠正;
⑥重新装配使之灵活;
更换合格油脂;
⑦修复轴承。
四、电动机起动困难,额定负载时,电动机转速低于额定转速较多
①电源电压过低;
②Δ接法电机误接为Y;
③笼型转子开焊或断裂;
④定转子局部线圈错接、接反;
③修复电机绕组时增加匝数过多;
⑤电机过载。
①测量电源电压,设法改善;
②纠正接法;
③检查开焊和断点并修复;
④查出误接处,予以改正;
⑤恢复正确匝数;
⑥减载。
五、电动机空载电流不平衡,三相相差大
①重绕时,定子三相绕组匝数不相等;
②绕组首尾端接错;
③电源电压不平衡;
④绕组存在匝间短路、线圈反接等故障。
①重新绕制定子绕组;
②检查并纠正;
③测量电源电压,设法消除不平衡;
④消除绕组故障。
六、电动机空载,过负载时,电流表指针不稳,摆动.
①笼型转子导条开焊或断条;
②绕线型转子故障(一相断路)或电刷、集电环短路装置接触不良。
①查出断条予以修复或更换转子;
②检查绕转子回路并加以修复。
七、电动机空载电流平衡,但数值大
①修复时,定子绕组匝数减少过多;
②电源电压过高;
③Y接电动机误接为Δ;
④电机装配中,转子装反,使定子铁芯未对齐,有效长度减短;
⑤气隙过大或不均匀;
⑥大修拆除旧绕组时,使用热拆法不当,使铁芯烧损。
①重绕定子绕组,恢复正确匝数;
②设法恢复额定电压;
③改接为Y;
④重新装配;
③更换新转子或调整气隙;
⑤检修铁芯或重新计算绕组,适当增加匝数。
八、电动机运行时响声不正常,有异响
①转子与定子绝缘纸或槽楔相擦;
②轴承磨损或油内有砂粒等异物;
③定转子铁芯松动;
④轴承缺油;
⑤风道填塞或风扇擦风罩,
⑥定转子铁芯相擦;
⑦电源电压过高或不平衡;
⑧定子绕组错接或短路。
①修剪绝缘,削低槽楔;
②更换轴承或清洗轴承;
③检修定、转子铁芯;
④加油;
⑤清理风道;
重新安装置;
⑥消除擦痕,必要时车内小转子;
⑦检查并调整电源电压;
⑧消除定子绕组故障。
九、运行中电动机振动较大
①由于磨损轴承间隙过大;
②气隙不均匀;
③转子不平衡;
④转轴弯曲;
⑤铁芯变形或松动;
⑥联轴器(皮带轮)中心未校正;
⑦风扇不平衡;
⑧机壳或基础强度不够;
⑨电动机地脚螺丝松动;
⑩笼型转子开焊断路;
绕线转子断路;
加定子绕组故障。
①检修轴承,必要时更换;
②调整气隙,使之均匀;
③校正转子动平衡;
④校直转轴;
⑤校正重叠铁芯,
⑥重新校正,使之符合规定;
⑦检修风扇,校正平衡,纠正其几何形状;
⑧进行加固;
⑨紧固地脚螺丝;
⑩修复转子绕组;
修复定子绕组。
十、轴承过热
规程规定,滚动轴承最高温度不超过95℃,滑动轴承最高温度不超过80℃。
并且温升不超过55℃(温升为轴承温度减去测试时的环境温度);
①滑脂过多或过少;
②油质不好含有杂质;
③轴承与轴颈或端盖配合不当(过松或过紧);
④轴承内孔偏心,与轴相擦;
⑤电动机端盖或轴承盖未装平;
⑥电动机与负载间联轴器未校正,或皮带过紧;
⑦轴承间隙过大或过小;
⑧电动机轴弯曲。
①按规定加润滑脂(容积的1/3-2/3);
②更换清洁的润滑滑脂;
③过松可用粘结剂修复,过紧应车,磨轴颈或端盖内孔,使之适合;
④修理轴承盖,消除擦点;
⑤重新装配;
⑥重新校正,调整皮带张力;
⑦更换新轴承;
⑧校正电机轴或更换转子。
十一、电动机过热甚至冒烟
①电源电压过高,使铁芯发热大大增加;
②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;
③修理拆除绕组时,采用热拆法不当,烧伤铁芯;
④定转子铁芯相擦;
⑤电动机过载或频繁起动;
⑥笼型转子断条;
⑦电动机缺相,两相运行;
⑧重绕后定于绕组浸漆不充分;
⑨环境温度高电动机表面污垢多,或通风道堵塞;
⑩电动机风扇故障,通风不良;
定子绕组故障(相间、匝间短路;
定子绕组内部连接错误)。
①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;
②提高电源电压或换粗供电导线;
③检修铁芯,排除故障;
④消除擦点(调整气隙或挫、车转子);
⑤减载;
按规定次数控制起动;
⑥检查并消除转子绕组故障;
⑦恢复三相运行;
⑧采用二次浸漆及真空浸漆工艺;
⑨清洗电动机,改善环境温度,采用降温措施;
⑩检查并修复风扇,必要时更换;
检修定子绕组,消除故障。
三相异步电动机的保护
摘要:
该文阐述了三相异步电动机的各种保护与控制相互关系,介绍了异步电动机的各种保护装置及其区别和联系。
在实际使用中,要对电动机综合实行过载保护,短路保护,温度保护、欠压、失压保护,漏电保护等。
根据保护装置的装设部位分为两大类:
1.安装在电动机内部的保护装置;
2.安装在电动机外部的各种保护装置。
最后指出,各种保护装置的质量必须可靠,结构应完整,保护功能应健全,应能满足实际需要,各部分之间有良好的配合。
关键词:
三相异步电动机控制保护保护装置
一、电动机保护及其装置
(一)安装在电动机内部的保护装置。
1.温度保护及装置。
(1)双金属盘式温度保护器。
这种温度保护器通常装在电动机端盖上,其体积和触头的电流容量一般都较大,外壳用酚醛塑料制成。
双金属盘式温度保护器不但对温度敏感,而且对电流也敏感,因此它具有更全面的保护功能。
(2)嵌入式温度保护器。
这种温度保护器通常装在电动机绕组中、绕组表面或绕组端面上,与电动机绕组一起进行浸渍处理。
嵌入式温度保护器具有体积小、灵敏度高、可靠性好等优点,常用于各类小容量电动机的直接保护。
(3)热断式温度保护器。
这种温度保护器是一次性动作的热保护器。
由于感温材料融化后不能复原,所以这种保护器只能一次性使用,它通常装在电动机的外壳上。
(4)正温度系数热敏电阻式温度保护器。
这类温度保护器是一种对温度敏感的新型半导体元件(简称PTC),即通称的热敏电阻。
为准确反应电动机绕组的温度,通常在电动机制造时将其埋设在定子绕组中,导线绑扎后有电动机接线盒引出。
此外,热敏电阻也可用于检测电动机断相温度信号,实现断相保护。
(二)安装在电动机外部的保护装置。
1.过载热保护及装置。
通常,交流电动机的故障主要是定子绕组损坏造成的。
这些绕组的损坏大多是电动机过载引起的。
电动机过载运行时,会出现电流增加,绕组过热现象。
如果时间过长,就会损坏绝缘。
过载热保护装置的功能就是在电动机过载情况下,及时切断电源,限制电动机过热时间,防止绝缘损坏。
其保护原理是通过热效应元件对电动机过载时增大的电流灵敏反应而发生动作,以断开电路。
常用的有双金属片热继电器和空气断路器。
其中热继电器纯属过载热保护装置,只起过载热保护,对短路、欠电压等不具备保护功能;
空气断路器的保护功能较多,可同时起电流过载热保护、短路保护、欠电压保护等多种功能。
2.过载电流保护及装置。
(1)用于小电流过载保护时,造成电动机不能充分发挥其过载能力。
这是因为,感应式继电器的动作电流最长延迟时间只有60s,而实际上电动机在过载20%的情况下至少能完全运行20min。
(2)过载电流保护装置与电动机之间无直接的热联系,当造成绝缘损坏的主要危险—过热—不是由电流过大所引起的,而是由通风不良、机械损耗增大等原因引起的,过载电流保护无效。
3.漏电保护及装置。
当人体可能触及的电动机漏电时,保护装置以人体接触的安全电压值或流过人体的安全电流值为基准,,自动及时切断电源,以保护人身安全,这种保护称为电动机的漏电保护。
在中性点直接接地的低压电网中,为提高接地保护的保护效果,可在电动机的电源侧装设漏电开关(漏电保护器)。
当电动机发生碰壳故障时,漏电开关立即动作,切断电源,从而壳防止人身触电。
4.短路保护及装置。
(1)对于单台电动机,熔体的额定电流(IRe)应大于或等于电动机额定电流(In)的1.5-2.5倍,即IRe≥(1.5-2.5)In。
电动机轻载起动时间较短时,系数可取1.5;
带负载起动、起动时间较长或起动频繁时,系数可取2.5.
(2)对于多台电动机,熔体的额定电流(IRe)应大于或等于最大一台电动机额定电流(In,max)的1.5-2.5倍加上同时使用的其他电动机额定电流之和(∑In),即IRe≥(1.5-2.5)In,max+∑In。
(3)熔断器的额定电压和额定电流不应小于线路的额定电压和所装熔体的额定电流,熔断器的型式随线路要求和安装条件而定。
5.缺相保护及装置。
(1)利用灯光信号报警装置或双刀开关对三相异步电动机进行缺相保护。
由于三相异步电动机的缺相运行大多是一相熔断器熔断造成的,所以在条件简陋而又有值班人员经常值班的场合,给每一项熔断器并联一只小红色灯泡,就可及时发现一相断线故障。
这种方法只能反映熔断器熔断所引起的缺相运行,而不能反映其他原因造成的断相故障。
此外,由于灯泡只能给出故障信号,不能产生保护动作,所以值班人员必须经常注意监视。
(2)利用欠电流继电器对三相异步电动机进行缺相保护。
在电动机的每相线路中个串联一个欠电流继电器,分别流过三相线电流。
当电动机正常运行时,三个继电器的常开触点全部接通。
当某相发生断线故障时,串联在该相的欠电流继电器就因失电而动作,断开接触器的线圈电路,电动机脱离电源,于是电动机停转。
这种保护方案具有动作准确、可靠的优点,其缺点是继电器线圈长期通过电动机的工作电流,而且当电动机容量较大时,还需要配用电流互感器,因而费用较高。
但对一些重要的生产机械或科研设备来说,采用欠电流继电器来保护电动机,还是很适宜的。
(3)带缺相保护装置的热继电器。
其结构特点是在普通热继电器结构的基础上增加了一个差动机构,该继电器即可对三相均衡过载起保护作用,又可对缺相运行起保护作用。
6.欠压保护及装置。
电动机的转矩、定子电流与电压有着密切关系。
当电源电压上下波动时,电动机的电磁转矩和定子电流相应发生变化。
与过电压相比,电动机欠电压运行的危害更大,电磁转矩与电压平方成正比地减少,导致电动机的转速下降,温升增高,严重时导致电动机闷车。
通常,500V以下低压电动机多采用空气断路器作为欠压保护装置。
当电压低于某一整定值时,空气断路器的欠压脱扣器便动作,使电动机的主电路断开。
此外,也可采用接触器自锁控制线路来避免电动机欠压运行。
当线路电压下降到一定值(一般为额定电压的85%左右)时,接触器线圈的两端电压也同样下降到该值,从而使接触器线圈的磁通减弱,产生的电磁引力
减少。
当电磁吸力减少到小于反作用弹簧的拉力时,动铁芯被迫释放,带动着主触头、自锁触头同时断开,自动切断主电路和控制短路,于是电动机失电停转,从而达到欠压保护的目的。
7.失压保护及装置。
当电网由于某种原因而突然停电时,电源电压下降为零,电动机停转,生产机械也随之停转。
一般情况下,生产机械的操作人员不可能及时拉开电源开关。
如果不采用失压保护措施,当电网故障排除,电源恢复供电时,电动机便会自行运作,从而生产机械也随之转动,此时很可能造成人身和设备事故,并引起电网过电流和瞬间网络电压下降。
因此,电动机应有失压(零压)保护电器。
在电动机的电气控制线路中,起失压保护作用的电器是接触器和中间继电器。
当电网停电时,接触器和中间继电器中的电流消失,电磁吸力减小为零,动铁芯释放,触头复位,从而切断主电路和控制短路的电源。
当电网恢复供电时,若不重新按下起动按钮,则电动机就不会自行起动。
这样,就达到了对电动机的失压(零压)保护的目的。
电动机在不同温度时的正常绝缘电阻值
在有关标准中规定。
家用电器电动机的定子绕组在热态或温升试验后,其对机壳的
绝缘电阻应不低于3MΩ。
那么,在常温或任意温度下电动机的绝缘电阻应是多少
呢?
在有关规程中规定,低压电动机在标准温度75℃时的最低绝缘电阻为0.5MΩ。
但是,检修中(未供烤)的电动机绝缘电阻如在0.5MΩ以上。
一般都认为仍可使用,因为这种低的绝缘电阻主要是因电动机受潮所致。
随电动机运行发热会将潮气驱除,绝缘电阻就会升高至正常值。
如运行中出现焦糊味或运行后绝缘电阻仍保持低值,说明电动机绝缘有不正常之处,应进行检修。
绝缘材料的耐热等级说明
电工常用的绝缘材料按其化学性质不同,可分为无机绝缘材料、有机绝缘材料和混合绝缘材料。
常用的无机绝缘材料有:
云母、石棉、大理石、瓷器、玻璃、硫黄等,主要用作电机、电器的绕组绝缘、开关的底板和绝缘子等。
有机绝缘材料有:
虫胶、树脂、橡胶、棉纱、纸、麻、人造丝等,大多用以制造绝缘漆,绕组导线的被覆绝缘物等。
混合绝缘材料为由以上两种材料经过加工制成的各种成型绝缘材料,用作电器的底座、外壳等。
绝缘材料的作用是在电气设备中把电势不同的带电部分隔离开来。
因此绝缘材料首先应具有较高的绝缘电阻和耐压强度,并能避免发生漏电、击穿等事故。
其次耐热性能要好,避免因长期过热而老化变质;
此外,还应有良好的导热性、耐潮防雷性和较高的机械强度以及工艺加工方便等特点。
根据上述要求,常用绝缘材料的性能指标有绝缘强度、抗张强度、比重、膨胀系数等。
绝缘耐压强度:
绝缘体两端所加的电压越高,材料内电荷受到的电场力就越大,越容易发生电离碰撞,造成绝缘体击穿。
使绝缘体击穿的最低电压叫做这个绝缘体的击穿电压。
使1毫米厚的绝缘材料击穿时,需要加上的电压千伏数叫做绝缘材料的绝缘耐压强度,简称绝缘强度。
由于绝缘材料都有一定的绝缘强度,各种电气设备,各种安全用具(电工钳、验电笔、绝缘手套、绝缘棒等),各种电工材料,制造厂都规定一定的允许使用电压,称为额定电压。
使用时承受的电压不得超过它的额定电压值,以免发生事故。
抗张强度:
绝缘材料单位截面积能承受的拉力,例如玻璃每平方厘米截面积能承受1400牛顿的拉力。
绝缘材料的绝缘性能与温度有密切的关系。
温度越高,绝缘材料的绝缘性能越差。
为保证绝缘强度,每种绝缘材料都有一个适当的最高允许工作温度,在此温度以下,可以长期安全地使用,超过这个温度就会迅速老化。
按照耐热程度,把绝缘材料分为Y、A、E、B、F、H、C等级别。
例如A级绝缘材料的最高允许工作温度为105℃,一般使用的配电变压器、电动机中的绝缘材料大多属于A级
耐热等级
最高允许工作温度(℃)
相当于该耐热等级的绝缘材料简述
Y
90
用未浸渍过的棉纱、丝及纸等材料或其组合物所组成的绝缘结构
A
105
用浸渍过的或浸在液体电介质(如变压器油中的棉纱、丝及纸等材料或其组合物所组成的绝缘结构)
E
120
用合成有机薄膜、合成有机瓷漆等材料其组合物所组成的绝缘结构
B
130
用合适的树脂粘合或浸渍、涂覆后的云母、玻璃纤维、石棉等,以及其他无机材料、合适的有机材料或其组合物所组成的绝缘结构
F
155
H
180
用合适的树脂(如有机硅树脂)粘合或浸渍、涂覆后的云母、玻璃纤维、石棉等材料或其组合物所组成的绝缘结构
C
180以上
用合适的树脂粘合或浸渍、涂覆后的云母、玻璃纤维、以及未经浸渍处理的云母、陶瓷、石英等材料或其组合物所组成的绝缘结构
三相异步电动机的控制
1.直接启动控制电路
直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%∽30%时,都可以直接启动。
1).点动控制
合上开关S,三相电源被引入控制电路,但电动机还不能起动。
按下按钮SB,接触器KM线圈通电,衔铁吸合,常开主触点接通,电动机定子接入三相电源起动运转。
松开按钮SB,图5-13点动控制
接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。
2).直接起动控制
(1)起动过程。
按下起动按钮SB1,接触器KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SBl后KM线圈持续通电,串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。
(2)停止过程。
按下停止按钮SB2,接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。
与SB1并联的KM的辅助常开触点的这种作用称为自锁。
图示控制电路还可实现短路保护、过载保护和零压保护。
图5-14直接起动控制
Ø
起短路保护的是串接在主电路中的熔断器FU。
一旦电路发生短路故障,熔体立即熔断,电动机立即停转。
起过载保护的是热继电器FR。
当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。
同时KM辅助触点也断开,解除自锁。
故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。
起零压(或欠压)保护的是接触器KM本身。
当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。
2.正反转控制
1).简单的正反转控制
(1)正向起动过程。
按下起动按钮SB1,接触器KM1线圈通电,与SB1并联的KM1的辅助常开触点闭合,以保证KM1线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。
按下停止按钮SB3,接触器KM1线圈断电,与SB1并联的KM1的辅助触点断开,以保证KM1线圈持续失电,串联在电动机回路中的KM1的主触点图5-15简单的正反转控制
持续断开,切断电动机定子电源,电动机停转。
(3)反向起动过程。
按下起动按钮SB2,接触器KM2线圈通电,与SB2并联的KM2的辅助常开触点闭合,以保证线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。
缺点:
KM1和KM2线圈不能同时通电,因此不能同时按下SB1和SB2,也不能在电动机正转时按下反转起动按钮,或在电动机反转时按下正转起动按钮。
如果操作错误,将引起主回路电源短路。
2).带电气互锁的正反转控制电路
将接触器KM1的辅助常闭触点串入KM2的线圈回路中,从而保证在KM1线圈通电时KM2线圈回路总是断开的;
将接触器KM2的辅助常闭触点串入KM1的线圈回路中,从而保证在KM2线圈通电时KM1线圈回路总是断开的。
这样接触器的辅助常闭触点KM1和KM2保证了两个接触器线圈不能同时通电,这种控制方式称为互锁或者联锁,这两个辅助常开触点称为互锁或者联锁触点。
图5-16带电气互锁的正反转控制
电路在具体操作时,若电动机处于正转状态要反转时必须先按停止按钮SB3,使互锁触点KM1闭合后按下反转起动按钮SB2才能使电动机反转;
若电动机处于反转状态要正转时必须先按停止按钮SB3,使互锁触点KM2闭合后按下正转起动按钮SB1才能使电动机正转。
3).同时具有电气互锁和机械互锁的正反转控制电路
采用复式按钮,将SB1按钮的常闭触点串接在KM2的线圈电路中;
将SB2的常闭触点串接在KM1的线圈电路中;
这样,无论何时,只要按下反转起动按钮,在KM2线圈通电之前就首先使KM1断电,从而保证KM1和KM2不同时通电;
从反转到正转的情况也是一样。
这种由机械按钮实现的互锁也叫机械或按钮互锁。
图5-17具有电气互锁和机械互锁的正反转控制
3.Y—△降压起动控制
按下起动按钮SB1,时间继电器KT和接触器KM2同时通电吸合,KM2的常开主触点闭合,把定子绕组连接成星形,其常开辅助触点闭合,接通接触器KM1。
KM1的常开主触点闭合,将定子接入电源,电动机在星形连接下起动。
KM1的一对常开辅助触点闭合,进行自锁。
经一定延时,KT的常闭触点断开,KM2断电复位,接触器KM3通电吸合。
KM3的常开主触点将定子绕组接成三角形,使电动机在额定图5-18Y—△降压起动控制
电压下正常运行。
与按钮SB1串联的KM3的常闭辅助触点的作用是:
当电动机正常运行时,该常闭触点断开,切断了KT、KM2的通路,即使误按SB1,KT和KM2也不会通电,以免影响电路正常运行。
若要停车,则按下停止按钮SB3,接触器KM1、KM2同时断电释放,电动机脱离电源停止转动。
4.行程控制
1).限位控制(图5-19)
当生产机械的运动部件到达预定的位置时压下行程开关的触杆,将常闭触点断开,接触器线圈断电,使电动机断电而停止运行。
图5-19限位控制图5-20行程往返控制
2).行程往返控制(图5-20)
按下正向起动按钮SB1,电动机正向起动运行,带动工作台向前运动。
当运行到SQ2位置时,挡块压下SQ2,接触器KM1断电释放,KM2通电吸合,电动机反向起动运行,使工作台后退。
工作台退到SQ1位置时,挡块压下SQ1,KM2断电释放,KM1通电吸合,电动机又正向起动运行,工作台又向前进,如此一直循环下去,直到需要停止时按下SB3,KM1和KM2线圈同时断电释放,电动机脱离电源停止转动。
总结:
1