不确定度测定汇总文档格式.docx
《不确定度测定汇总文档格式.docx》由会员分享,可在线阅读,更多相关《不确定度测定汇总文档格式.docx(15页珍藏版)》请在冰豆网上搜索。
图2测量误差示意图
测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。
测量不确定度一般由若干分量组成。
其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;
而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。
标准不确定度是“以标准偏差表示的测量不确定度。
标准不确定度(全称为标准测量不确定度)可采用A类标准不确定度、B类标准不确定度及合成标准不确定度、相对合成标准不确定度等表示。
测量不确定度的A类评定,简称A类评定,是指“对在规定测量条件下测得的量值用统计分析的方法进行的测量不确定度分量的评定。
测量不确定度的B类评定,简称B类评定,是指“用不同于测量不确定度A类评定的方法进行的测量不确定度分量的评定。
合成标准不确定度全称合成标准测量不确定度,是指“由在一个测量模型中各输入量的标准测量不确定度获得的输出量的标准测量不确定度。
相对标准不确定度全称相对标准测量不确定度,是指“标准不确定度除以测得值的绝对值。
自由度是指“在方差的计算中,和的项数减去对和的限制数。
扩展不确定度全称扩展测量不确定度,是指“合成标准不确定度与一个大于1的数字因子的乘积。
包含区间是指“基于可获信息确定的包含被测量一组值的区间,被测量值以一定概率落在该区间内。
包含概率是指“在规定的包含区间内包含被测量的一组值的概率。
包含因子是指“为获得扩展不确定度,对合成标准不确定度所乘的大于1的数。
”包含因子有时也称扩展因子,用符号k表示。
表1表示测量不确定度常用的名称及符号
名称
符号
说明
标准不确定度
u或u(xi)
相对标准不确定度
urel
rel——表示“相对”的英文字母的缩写。
测量不确定度的A类评定
uA或uA(xi)
测量不确定度的B类评定
uB或uB(xi)
合成标准不确定度
uc或uc(y)
相对合成标准不确定度
ucrel或ucrel(y)
扩展不确定度
U或Up
Up——包含概率为p的扩展不确定度
相对扩展不确定度
Urel或Uprel
包含因子
k或kp
kp——包含概率为p的包含因子
包含概率
p
如,p=95%,p=99%。
有效自由度
veff
eff——表示“有效”的英文字母的缩写。
注:
①表中A、B、c、rel、eff为正体;
x、y、k、i、p、n、u、U为斜体。
②表中大写U表示扩展不确定度;
小写u表示标准不确定度,如:
标准不确定度A类评定:
uA
标准不确定度B类评定:
uB
合成标准不确定度,uc或uc(y)
扩展或相对扩展不确定度,U或Up、Urel或Uprel
测量模型是指测量中涉及的所有已知量间的数学关系。
测量模型简称模型。
测量模型的通用形式是方程:
f(Y,X1,…,Xn)=0,其中测量模型中的输出量Y是被测量,其量值由测量模型中输入量X1,…,Xn的有关信息推导得到。
在测量模型中,输入量与输出量间的函数关系又称测量函数。
建立测量模型,即被测量与各输入量之间的函数关系。
若Y的测量结果为y,输入量Xi的估计值为xi,则y=f(x1,x2,…,xn)。
在建立模型时要注意有一些潜在的不确定度来源不能明显地呈现在上述函数关系中,它们对测量结果本身有影响,但由于缺乏必要的信息无法写出它们与被测量的函数关系,因此在具体测量时无法定量地计算出它们对测量结果影响的大小,在计算公式中只能将其忽略而作为不确定度处理。
图3测量不确定度评定内容
3标准不确定度的A类评定(分量)
贝塞尔公式法
在重复性条件下或复现性条件下对同一被测量(一个被测件)独立重复观测n次,得到n个观测值xi(i=1,2,...,n),被测量X的最佳估计值是n个独立测得值的算术平均值
,按公式(1-1)计算:
(1-1)
单个测得值xk的实验方差s2(xk),按公式(1-2)计算:
(1-2)
单个测得值xk的实验标准偏差s(xk),按公式(1-3)计算:
(1-3)
公式(1-3)是贝塞尔公式,自由度v为n-1。
实验标准偏差s(xk)表征了测得值x的分散性,测得重复性用s(xk)表征。
被测量估计值
的A类标准不确定度为:
(1-4)
A类标准不确定度
的自由度为实验标准偏差s(xk)的自由度,即v=n-1。
实验标准偏差
表征了被测量估计值
的分散性。
在规范化的常规检定、校准或检测中评定合并样本标准偏差
若对每个被测件的被测量Xi在相同条件下进行n次独立测量,测得值为xi1,xi2,…,xin,其平均值为
;
若有m个被测件,则有m组这样的测得值,可按公式(1-5)计算单个测得值的合成样本标准偏差sp(xk):
(1-5)
式中:
i—组数,i=1,2,…,m;
j—每组测量的次数,j=1,2,…,n。
公式(1-5)给出的sp(xk),其自由度为m(n-1)。
若对每个被测件已分别按n次重复测量算出了其实验标准偏差si,则m组测得值的合并样本标准偏差sp(xk)可按公式(1-6)计算:
(1-6)
当实验标准偏差si的自由度均为v0时,公式(1-6)给出的sp(xk)的自由度为mv0。
若对m个被测量Xi分别重复测量的次数不完全相同,设各为ni,而Xi的实验标准偏差s(xi)的自由度为vi,通过m个si与vi可得sp(xk)按公式(1-7)计算:
(1-7)
公式(1-7)给出sp(xk)的自由度为
。
由上述方法对某个被测件进行n′次测量时,所得测量结果最佳估计值的A类标准不确定度为:
(1-8)
用这种方法可以增大评定的标准不确定度的自由度,也就提高了可信程度。
预评估重复性
在日常开展同一类被测件的常规检定、校准或检测工作中,如果测量系统稳定,测得重复性无明显变化,则可用该测量系统以与测量被测件相同的测量程序、操作者、操作条件和地点,预先对典型的被测件的典型被测量值进行n次测量(一般n不小于10),由贝塞尔公式计算出单个测得值的实际标准偏差s(xk),即测量重复性。
在对某个被测件实际测量时可以只测量n′次(1≤n′<
n),并以n′次独立测量的算术平均值作为被测量的估计值,则该被测量估计值由于重复性导致的A类标准不确定度按公式(1-9)计算:
(1-9)
用这种方法评定的标准不确定度的自由度仍为v=n-1。
注意:
当怀疑被测量重复性有变化时,应及时重新测量和计算实验标准偏差s(xk)。
A类评定流程
4标准不确定度的B类评定(分量)
B类评定的一般表示
B类评定的方法是根据有关的信息或经验,判断被测量的可能值区间[
-a,
+a],假设被测量值的概率分布,根据概率分布和要求的包含概率p估计因子k,则B类标准不确定度uB可由(2-1)式得到:
(2-1)
a为被测量可能值区间的半宽度。
当k为扩展不确定度的倍乘因子时称包含因子,其他情况下根据概率论获得的k称置信因子。
B类评定(来源)通常基于诸如以下信息:
(1)权威机构发布的量值;
(2)有证标准物质的量值;
(3)校准证书;
(4)仪器的漂移;
(5)经检定的测量仪器的准确度等级;
(6)根据人员经验推断的极限值等。
确定B类评定的区间半宽度a
(1)生产厂提供的测量仪器的最大允许误差为±
△,或由手册查出所用的参考数据误差限为±
△,或当测量仪器或实物量具给出准确度等级等,并经计量部门检定合格,则评定仪器的不确定度时,可能值区间的半宽度为:
a=△
(2)校准证书提供的校准值,给出了其扩展不确定度为U,则区间的半宽度为:
a=U
(3)由有关资料查得某参数的最小可能值为a-和最大值为a+,最佳估计值为该区间的中点,则区间半宽度可以用下式估计:
a=(a+─a-)/2
(4)必要时,可根据经验推断某量值不会超出的范围,或用实验方法来估计可能的区间。
k的确定方法
(1)已知扩展不确定度是合成标准不确定度的若干倍时,该倍数就是包含因子k值。
(2)假设被测量值服从正态分布时,根据要求的概率查表2得到k值。
表2正态分布情况下概率p与k值间的关系
k
1
2
3
(3)假设为非正态分布时,根据要求的概率查表3得到k值。
表3常用非正态分布时的k值及B类标准不确定度uB(x)
分布类别
p(%)
uB(x)
三角
100
a/
梯形(β=)
a/2
矩形(均匀)
反正弦
两点
a
表3中β为梯形的上底与下底之比,对于梯形分布来说,
,特别当β等于1时,梯形分布变为矩形分布;
当β等于0时,变为三角分布。
B类评定概率分布的假设
(1)被测量受许多随机影响量的影响,当它们各自的影响都很小时,不论各影响量的概率分布是什么形式,被测量的随机变化服从正态分布。
如证书或报告给出的不确定度是具有包含概率为、、的扩展不确定度(即给出U90、U95、U99),此时,除非另有说明,可按正态分布来评定B类标准不确定度。
(2)当利用有关信息或经验,估计出被测量可能值区间的上限和下限,其值在区间外的可能几乎为零时,若被测量值落在该区间内的任意值处的可能性相同,则可假设为均匀分布(或称矩形分布、等概率分布)。
如数据修约、测量仪器最大允许误差或分辨力、参考数据的误差限、度盘或齿轮的回差、平衡指示器调零不准、测量仪器的滞后或摩擦效应导致的不确定度及对被测量的可能值落在区间内的情况缺乏了解等,一般假设为均匀分布。
(3)当利用有关信息或经验,若被测量值落在该区间中心的可能性最大,则假设为三角分布。
如两相同均匀分布的合成、两个独立量之和值或差值服从三角分布。
(4)当利用有关信息或经验,若落在该区间中心的可能性最小,而落在该区间上限和下限的可能性最大,则可假设为反正弦分布(即U形分布)。
如度盘偏心引起的测角不确定度、正弦振动引起的位移不确定度、无线电测量中失配引起的不确定度、随时间正弦或余弦变化的温度不确定度等。
(5)按级使用量块时,中心长度偏差的概率分布可假设为两点分布。
(6)安装或调整测量仪器的水平或垂直状态导致的不确定度常假设为投影分布。
(7)实际工作中,可依据同行共识确定概率分布。
分辨力导致的B类不确定度分量
若数字显示器的分辨力为δx,由分辨力导致的标准不确定度分量u(x)采用B类评定,则区间半宽度为a=δx/2,假设可能值在区间内为均匀分布,查表3得k=
,因此由分辨力导致的标准不确定度分量u(x)为:
(2-2)
B类标准不确定度分量的自由度
(2-3)
根据经验,按所依据的信息来源的可信程度来判断u(xi)的相对标准不确定度△[u(xi)]/u(xi)。
按上式计算出的自由度列于表4。
表4△[u(xi)]/u(xi)与vi的关系
△[u(xi)]/u(xi)
vi
∞
6
50
12
8
B类评定流程
5合成标准不确定度评定
合成标准不确定度表示
被测量Y的估计值y=f(x1,x2,…,xN)的标准不确定度是由相应输入量x1,x2,…,xN的标准不确定度合理合成求得的,其表示式的符号为uc(y)。
合成标准不确定度uc(y)表征合理赋予被测量之值Y的分散性,是一个估计标准偏差。
求各个输入分量标准不确定度对输出量y的标准不确定度的贡献
在求出各个输入量的不确定度分量ui(x)之后,还需要计算传播系数(灵敏系数)ci,最后计算由此引起的被测输出量y的标准不确定度分量:
(3-1)
式中传播系数或灵敏系数
的含义是,输入量的估计值xi的单位变化引起的输出量的估计值y的变化量,即起到了不确定度的传播作用。
合成标准不确定度的uc(y)的计算公式:
(3-2)
在实际工作中,若各输入量之间均不相关,或有部分输入量相关,但其相关系数较小(弱相关)而近似为r(xi,xj)=0,于是便可以化简为:
(3-3)
当
,则可进一步化简为:
(3-4)
此即计算合成不确定度一般采用的方和根法,即将各个标准不确定分量平方后求其和再开跟。
常用的表达形式
当简单直接测量,测量模型为y=x时,应该分析和评定测量时导致测量不确定度的各分量ui,若相互间不相关,则合成标准不确定度按公式(3-5)计算:
(3-5)
当测量模型为Y=A1X1+A2X2+…+ANXN且各输入量间互不相关时,合成标准不确定度可以用公式(3-6)计算:
(3-6)
当测量模型为
且各输入量间互不相关时,合成标准不确定度可使用公式(3-7)计算:
(3-7)
当测量模型为
且各输入量间互不相关时,公式(3-7)变换为公式(3-8):
(3-8)
只有在测量函数是各输入量的乘积时,可由输入量的相对合成标准不确定度
计算输出量的相对标准不确定度。
各输入量间正强相关,相关系数为1时,合成标准不确定度应按公式(3-9)计算:
(3-9)
若灵敏系数为1,则公式(3-9)变换为(3-10):
(3-10)
关于相关性的说明
对大部分检测工作(除涉及航天、航空、兴奋剂检测等特殊领域中要求较高的场合外),只要无明显证据证明某个分量有强相关时,均可按不相关处理,如发现分量存在强相关,如采用相同仪器测量的量之间,则尽可能改用不同仪器分量测量这些量使其不相关。
如证实某些分量之间存在强相关,则首先判断相关性是正相关还是负相关,并分别取相关系数为+1或-1,然后将这些相关分量算术相加后得到一个“净”分量,再将它与其他独立无关分量用方和根求得uc(y)。
如发现各分量中有一个占支配地位时(该分量大于其次那个分量三倍以上),合成不确定度就决定于该分量。
有效自由度
有效自由度是指合成标准不确定度uc(y)的自由度,用符号veff表示。
veff反映了uc(y)的可靠程度,veff越大,uc(y)越可靠。
以下情况需要计算有效自由度veff:
(1)当评定某包含概率下的扩展不确定度UP时,为求得包含因子kp需要计算uc(y)的有效自由度veff;
(2)当客户需要了解不确定度的可靠程度而提出要求时。
当各分量间相互独立且输出量接近正态分布或t分布(测量模型为线性函数)时,合成标准不确定度的有效自由度通常可按公式(3-11)计算:
(3-11)且
时,有效自由度可用相对标准不确定度的形式计算,见公式(3-12):
(3-12)
实际计算中,得到的有效自由度veff不一定是一个整数,可采用将veff数字舍位到最接近的一个较低的整数。
如计算得到veff=,则取veff=12。
合成标准不确定度计算流程
6扩展不确定度评定
扩展不确定度:
是被测量可能值包含区间的半宽度。
扩展不确定度分为U和UP两种。
一般情况下,在给出测量结果时报告扩展不确定度U。
(1)扩展不确定度U由合成标准不确定度uc乘包含因子k得到:
U=kuc(4-1)
当y和uc(y)所表征的概率分布近似为正态分布(不确定度分量较多且其大小也比较接近,可估计为正态分布)时,且uc(y)的有效自由度较大情况下,若k=2,则由U=2uc所确定的区间具有的包含概率约为95%。
若k=3,则由U=3uc所确定的区间具有的包含概率约为99%。
在通常的测量中,一般取k=2。
当取其他值时,应说明其来源。
当给出扩展不确定度U时,一般应注明所取的k值;
若未注明k值,k=2。
(2)当要求扩展不确定度所确定的区间具有接近于规定的包含概率p时,扩展不确定度用符号UP表示,当p为,时,分别表示为U95和U99。
UP=kpuc(4-2)
kp是包含概率为p时的包含因子。
kp=tp(veff)(4-3)
根据合成标准不确定度uc(y)的有效自由度veff和需要的包含概率,查《t分布在不同概率p与自由度v时的tp(v)值(t值)表》得到tp(veff)值,该值即包含概率为p时的包含因子kp值。
如果合成不确定度中A类分量占比重较大,如
而且作A类评估时重复测量次数n较少,则包含因子k必须查t分布表获得。
扩展不确定度UP=kpuc(y)提供了一个具有包含概率为p的区间y±
UP。
在给出UP时,应同时给出有效自由度veff。
(3)如果可以确定Y可能值的分布不是正态分布,而是接近于其他某种分布,则不应按
kp=tp(veff)计算UP。
例如Y可能近似为矩形分布,取p=时kp=≈
取p=时kp=≈
取p=1时kp=≈
图4正态分布概率分布图
扩展不确定度的有效位数
估计值y的数值和它的合成标准不确定度uc(y)或扩展不确定度U的数值均不应给出过多的有效位数。
通常最终报告的uc(y)和U最多为两位有效数字。
对各标准不确定度分量u(xi),为了在连续计算中避免修约误差导致不确定度,可以适当保留多余的位数。
在报告最终结果时,一般采用GB/T8170-2008《数值修约规则与极限数值的表示和判定》修约到需要的有效数字。
如U=经修约写成28kHz。
有时也可将不确定度最末位后面的数进位而不舍去。
如U=,可以进位到11kHz。
7测量结果及其不确定度报告
完整的测量结果包含两个基本量,一时被测量Y的最佳估计值y,通常由数据测量列的算术平均值给出;
另一个就是描述该测量结果分散性的量,即测量不确定度。
一般以合成标准不确定度uc(y)或扩展不确定度U(y)或它们的相对形式
(
)、
)给出。
采用形式U=kuc(y)报告测量结果的不确定度
取包含因子k=2,扩展不确定度为U=kuc(ms)=2×
=,
测量结果不确定度报告有以下两种形式:
①ms=,U=;
k=2。
②ms=±
g;
采用形式Up=kpuc(y)报告测量结果的不确定度
①ms=,U95=;
veff=9。
veff=9,括号内第二项为U95之值。
③ms=(79)g;
veff=9,括号内为U95之值,其末位与前面结果末位熟对齐。
④ms=g;
veff=9,括号内为U95之值,与前面结果有相同的计量单位。
8测量不确定度的评定步骤
CNAS认可准则与指南
①CNAS-CL07:
2011《测量不确定度的要求》
②CNAS-GL05:
2011《测量不确定度要求的实施指南》
③CNAS-GL06:
2006《化学分析中不确定度的评估指南》
④CNAS-GL07:
2006《电磁干扰测量中不确定度的评定指南》
⑤CNAS-GL08:
2006《电器领域不确定度的评估指南》
⑥CNAS-GL10:
2006《材料理化检验测量不确定度评估指南及实例》
⑦CNAS-GL28:
2010《石油石化领域理化检测测量不确定度评估指南及实例》