年产1000吨酸性蛋白酶的生产工艺设计.docx

上传人:b****2 文档编号:1708927 上传时间:2022-10-23 格式:DOCX 页数:18 大小:215.04KB
下载 相关 举报
年产1000吨酸性蛋白酶的生产工艺设计.docx_第1页
第1页 / 共18页
年产1000吨酸性蛋白酶的生产工艺设计.docx_第2页
第2页 / 共18页
年产1000吨酸性蛋白酶的生产工艺设计.docx_第3页
第3页 / 共18页
年产1000吨酸性蛋白酶的生产工艺设计.docx_第4页
第4页 / 共18页
年产1000吨酸性蛋白酶的生产工艺设计.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

年产1000吨酸性蛋白酶的生产工艺设计.docx

《年产1000吨酸性蛋白酶的生产工艺设计.docx》由会员分享,可在线阅读,更多相关《年产1000吨酸性蛋白酶的生产工艺设计.docx(18页珍藏版)》请在冰豆网上搜索。

年产1000吨酸性蛋白酶的生产工艺设计.docx

年产1000吨酸性蛋白酶的生产工艺设计

1.前言

酸性蛋白酶是一类最适pH值为2.5〜5.0的天冬氨酸蛋白酶,相对分子质量为30000〜40000。

酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。

根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:

一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。

细菌中尚未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。

国外关于酸性蛋白酶的生产研究从20世纪初就开始了。

1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。

1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。

自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国内外对微生物发酵生产酸性蛋白酶进行了广泛的研究。

1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。

1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。

1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。

1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。

2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。

国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。

与国外相比,我国对酸性蛋白酶的研究相对较晚些。

1970年上海工业微生物研究所首先从黑曲霉中筛选出一株产酸性蛋白酶菌株,并和上海酒精厂协作进行中试生产,填补了我国酸性蛋白酶制剂的空白.近年来国内在酸性蛋白酶上的研究大都致力于选育产酶活力高、抗逆性好的菌种,并获得了一些很有应用前途的产酶菌株。

目前用于酸性蛋白酶生产的高产菌株主要有黑曲霉、宇佐美曲霉和青霉及它们的突变株。

李永泉等,对宇佐美曲霉所产的酸性蛋白酶进行了发酵过程动力学研究.戚淑威等对青霉产酸性蛋白酶的适宜条件和酶学性质进行了分析。

谢必峰等,采用硫酸铵盐析法和离子交换层析法分离纯化了黑曲霉产酸性蛋白酶,并对其氨基酸组分进行了分析。

2008年王云等,通过质谱指纹法对黑曲霉发酵液中所产蛋白进行了分析比对和鉴定酸性蛋白酶分子生物学方面的研究,国内仅仅集中于凝乳酶和胃蛋白酶方面,有关真菌酸性蛋白酶的分子生物学研究报道很少

 

 

摘要:

本课题设计是利用黑曲霉(Aspergillusniger)3.350制备酸性蛋白酶,主要从菌种的选育,培养基的配置,灭菌,种子扩大培养,和发酵罐的设计,发酵车间的物料衡算,发酵过程的工艺控制,下游加工十点进行。

阐述了1000吨饲用酸性蛋白酶的制取工艺。

其中对发酵罐做了创新性设计。

 

2.菌种的选育

2.1菌种的制备

不管在过去、现在和将来,微生物是各种生物活性产物的丰富资源。

在发酵前期,微生物的选择至关重要,此课题设计的是利用黑曲霉发酵生产酸性蛋白酶的整体过程。

选择性分离的一般步骤如下:

含微生物材料的选择——材料的预处理——所需菌种的分离——菌种的培养——菌种初筛——菌种复筛——性能鉴定——菌种保藏。

本实验选用黑曲霉作为菌种,发酵生产酸性蛋白酶,该霉菌株在中国微生物菌种保藏管理委员会普通微生物中心的保藏编号为3.350。

而黑曲霉(Aspergillusniger)生产酸性蛋白酶的工艺流程为:

原始菌株→分离纯化→紫外线诱变→选育菌株分离纯化→亚硝基胍诱变→选育菌株分离纯化→选育菌株生产工艺优化→传代试验→选育菌株→斜面菌种→三角瓶菌种→浅盘菌种_________________

主原料→混料(水、无机氮、无机盐)→蒸料→冷却→接种→发酵→稳定化处理→干燥→粉碎→包装→检测→成品

粗酶→抽提→过滤→盐析→沉淀→干燥粉碎→包装→检测→成品

2.2菌种的保藏

菌种是从事微生物学以及生命科学研究的基本材料,特别是利用微生物进行有关生产工业,更离不开菌种。

所以,菌种保藏是进行微生物学研究和微生物育种工作的重要组成部分,其任务是使菌种不死亡,同时还要尽可能设法把菌种的优良特性保持下来而不致向坏的方面转化。

菌种保藏主要是根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异。

一般可通过保持培养基营养成分在最低水平、缺氧状态、干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力。

常用的菌种保藏方法有:

斜面冰箱保藏法、沙土管保藏法、菌丝速冻法、石蜡油封存法、真空冷冻干燥保藏法和液氮超低温保藏法。

此课题中黑曲霉采用真空冷冻干燥保藏法,预冻:

本实验采用-80℃预冻2h后进行干燥。

干燥过程:

第一阶段干燥.样品温度分别控制在-15℃14h,10℃10h,真空度为150Pa,直到样品的水分升华除去90%;第二阶段干燥。

升高板层温度至20℃,迅速蒸发样品中的残余水分。

该过程大约需要10h。

将冻干菌存放于0℃冰箱中备用.

 

3.培养基的配制

培养基的类型很多,可以根据组成、状态和用途等进行分类,按照用途可以分成孢子培养基、种子培养基和发酵培养基。

微生物大规模发酵设计主要用到孢子、种子和发酵培养基这三种类型。

3.1活化培养基

黑曲霉的活化培养基的配制如下:

斜面培养基:

蔗糖30g,NaNO33g,MgSO40.5g,KCl0.5g,FeSO40.01g,K2HPO41g,琼脂20g,将上述各组分溶于1000mL水中,121℃灭菌20min,备用。

3.2种子培养基

种子培养基是供孢子发芽、生长和大量繁殖菌丝体,并使菌丝体长的粗壮成为活力强的种子。

对于种子培养基的营养要求比较丰富和完全,氮源和维生素的含量也比较高些,浓度以稀薄为好,可以达到较高的溶解氧,供大量菌体生长和繁殖。

黑曲霉的种子培养基为麦芽汁培养基。

3.3发酵培养基

发酵培养基的要求是营养要适当丰富和完全适合于菌种的生理特性和要求,使菌种迅速生长、健壮,能在比较短的周期内充分发挥产生菌合成发酵产物的能力,但要注意成本和能耗。

黑曲霉3.350发酵培养基的配方:

豆饼粉3.75%,玉米粉0.625%,鱼粉0.625%,氯化铵1.0%,氯化钙0.5%,磷酸二氢钠0.2%,豆饼石灰水解液10%,pH5.5。

3.4补料培养基

黑曲霉3.350发酵培养基的配方:

豆饼粉37.5%,玉米粉0.625%,鱼粉0.625%,氯化铵1.0%,氯化钙0.5%,磷酸二氢钠0.2%,豆饼石灰水解液10%,pH5.5。

主要加大豆饼粉的量,起补充碳源,氮源和生长因子之用。

 

4.灭菌

生物化学反应过程中,特别是细胞培养过程中,往往要求在没有杂菌污染的情况下进行,这是由于生物反应系统中通常含有比较丰富的营养物质,因而很容易受到杂菌的污染,进而产生各种不良的后果:

(1)由于杂菌的污染,使生物化学反应的基质或产物消耗,造成产率下降;

(2)由于杂菌所产生的某些代谢产物,或污染后发酵液的某些理化性质的改变,使产物的提取变得困难,造成收得率降低或使产品质量下降;

(3)污染的杂菌可能会分解产物而使生产失败;

(4)污染的杂菌大量繁殖,会改变反应介质的pH,从而使生物化学反应发生异常变化;

(5)发生噬菌体污染,微生物细胞被破裂而使生产失败等。

4.1灭菌方法

所谓灭菌,就是指用物理或化学杀灭或去除物料或设备中一切有生命物质的过程。

常用的灭菌方法有:

化学灭菌、射线灭菌、干热灭菌、湿热灭菌和过滤灭菌等。

本设计采用湿热灭菌。

4.2培养基的连续灭菌

图4-1连续灭菌的流程图

培养基连续灭菌为在短时间内被加热到灭菌温度(130℃~140℃),短时间内保温(一般为5~8min),升降温时间相对较短,可以实现自动控制、提高发酵罐的设备利用率,蒸汽用量平稳等优点,培养基在短时间内被加热到灭菌温度,短时间保温后快速冷却,再进入早已灭完菌的发酵罐,这样不但可以节省时间,更重要的是减少了培养基的破坏率。

对补料培养基的灭菌方法跟发酵培养基的灭菌方法一样都是湿热灭菌,其加热蒸汽压力要求较高,一般不小于0.45MPa。

连续灭菌流程如上图。

影响灭菌效果的因素有:

微生物的种类和数量;培养基的性质、浓度、成分;灭菌的温度和时间。

灭菌原理:

对数残留定律(对培养基进行湿热灭菌时,培养基中的微生物受热死亡的速率与残存的微生物数量成正比)。

4.3空气灭菌

此课题以空气为氧源。

根据国家药品质量管理规范的要求,生物制品、药品的生产场地业需要符合空气洁净度的要求。

获得无菌空气的方法有:

辐射灭菌、化学灭菌、加热灭菌、静电除菌、过滤介质除菌等。

过滤介质除菌是目前发酵工业中空气除菌的主要手段,常用的过滤介质有棉花、活性炭或玻璃纤维、有机合成纤维、有机和无机烧结材料等。

4.3.1过滤除菌流程及设备

过滤除菌流程图如图4-1所示:

1-粗过滤器;2-压缩机;3-贮罐;4,6-冷却器;5-旋风分离器;7-丝网除沫器;8-加热器;9-空气过滤器

图4-1空气除菌设备流程图

4.3.2无菌空气的检查

无菌检查方法有肉汤培养法、斜面培养法和双碟培养法。

这里采用斜面培养法进行无菌空气的检查,具体方法为:

500ml三角瓶内装斜面培养基50ml,接种后置旋转式摇床上,30℃下培养24h后观察有无菌落形成。

4.4发酵罐的灭菌

发酵罐的灭菌可采用空罐灭菌,此处采用空罐灭菌。

空罐灭菌是将所有的通气口都稍微打开,然后通入水蒸汽,让水蒸汽尽量通过每一个菌落达到灭菌效果。

具体方法是:

在121℃灭菌80分钟。

5.种子扩大培养

本发酵属于一级种子罐扩大培养,二级发酵。

设计流程图如图5-1:

图5-1种子扩大培养流程图

5.1种子制备

将菌种接种于活化斜面培养基培养,30℃活化24h。

活化后的菌种用生理盐水洗下,转接于摇瓶种子培养基,接种量5%~6%,30℃培养12h。

经摇瓶培养后的种子,以接种量5%接种于种子罐,30℃培养12h,菌种浓度达到10

8~109个/mL。

5.2发酵罐培养

将扩大培养后的菌种以5%的接种量接入发酵罐中,发酵温度控制在30℃,罐压0.5㎏/cm2,发酵过程中通过流加Na0H溶液控制发酵液pH。

根据菌体浓度、pH决定具体发酵时间为35.5h。

发酵过程中采用自动搅拌器,将转速控制在100r/min,使流加碱液与发酵液快速混合均匀。

 

6.发酵罐的设计

广东省微生物研究所通过改变摇瓶装液量和转速来考察溶氧对黑曲霉菌种的影响。

实验结果表明:

在250ml的三角瓶中装液量为100ml,转速150r/min酶活最高,装液量过多或过少,产酶量较低。

摇床转速较低时,通气量不够,生长较慢,产酶量也低。

当摇床转速过快时,产酶量也不高,可能是菌丝断裂过度。

培养基中的营养主要被菌体用于自身的生长。

此课程设计中选择使用机械搅拌式通风发酵罐。

机械搅拌通风发酵罐是发酵工厂最常用类型。

它是利用机械搅拌器的作用,使空气和发酵液充分混合,促使氧在发酵液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气。

6.1发酵罐的结构

机械搅拌式通风发酵罐的主要组成部件有:

罐体、搅拌器、轴封、消泡器、联轴器、中间轴承、空气吹泡管(或空气喷射器)、挡板、冷却装置、人孔以及管路等。

6.2发酵罐罐体的几何尺寸计算

1.发酵罐普遍H0/D=1.97,而酸性蛋白酶对空气有一定要求,为了使之更大面积的接受氧气,黑曲霉所用发酵罐设计为矮胖形,即:

H0/D=1.63,从通风角度讲,空压机为无油润滑一级压缩,出口压力0.3MPa。

压缩空气经过约60m米以上路程才送到发酵车间,管道阻力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1