湘教版九年级数学下册教案全册文档格式.docx
《湘教版九年级数学下册教案全册文档格式.docx》由会员分享,可在线阅读,更多相关《湘教版九年级数学下册教案全册文档格式.docx(103页珍藏版)》请在冰豆网上搜索。
解得
∴k=2.
紧扣定义中的两个特征:
①二次项系数不为零;
②自变量最高次数为2.
见《学练优》本课时练习“课堂达标训练”第3题
【类型三】与二次函数系数有关的计算
已知一个二次函数,当x=0时,y=0;
当x=2时,y=
当x=-1时,y=
.求这个二次函数中各项系数的和.
设二次函数的表达式为y=ax2+bx+c(a≠0).把x=0,y=0;
x=2,y=
x=-1,y=
分别代入函数表达式,得
所以这个二次函数的表达式为y=
x2.所以a+b+c=
+0+0=
,即这个二次函数中各项系数的和为
.
涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y=ax2+bx+c(a≠0).解决这类问题要根据x,y的对应值,列出关于字母a,b,c的方程(组),然后解方程(组),即可求得a,b,c的值.
探究点二:
建立简单的二次函数模型
一个正方形的边长是12cm,若从中挖去一个长为2xcm,宽为(x+1)cm的小长方形.剩余部分的面积为ycm2.
(1)写出y与x之间的函数关系式,并指出y是x的什么函数?
(2)当x的值为2或4时,相应的剩余部分的面积是多少?
几何图形的面积一般需要画图分析,相关线段必须先用x的代数式表示出来.如图所示.
(1)y=122-2x(x+1),又∵2x≤12,∴0<
x≤6,即y=-2x2-2x+144(0<
x≤6),∴y是x的二次函数;
(2)当x=2时,y=-2×
22-2×
2+144=132,当x=4时,y=-2×
42-2×
4+144=104,∴当x=2或4时,相应的剩余部分的面积分别为132cm2或104cm2.
二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.
见《学练优》本课时练习“课后巩固提升”第8题
三、板书设计
本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.
1.2 二次函数的图象与性质
第1课时 二次函数y=ax2(a>
0)的图象与性质
1.会用描点法画二次函数y=ax2(a>
0)的图象,理解抛物线的概念;
2.掌握形如y=ax2(a>
0)的二次函数的图象和性质,并会应用其解决问题.(重点)
自由落体公式h=
gt2(g为常量),h与t之间是什么关系呢?
它是什么函数?
它的图象是什么形状呢?
二次函数y=ax2(a>
0)的图象
已知y=(k+2)xk2+k是二次函数.
(1)求k的值;
(2)画出函数的图象.
根据二次函数的定义,自变量x的最高次数为2,且二次项系数不为0,这样能确定k的值,从而确定表达式,画出图象.
(1)∵y=(k+2)xk2+k为二次函数,∴
解得k=1;
(2)当k=1时,函数的表达式为y=3x2,用描点法画出函数的图象.
列表:
x
-1
-
1
…
y=3x2
3
描点:
(-1,3),(-
,
),(0,0),(
),(1,3).
连线:
用光滑的曲线按x的从小到大的顺序连接各点,图象如图所示.
列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y=ax2(a≠0)图象关于y轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y轴右侧的两个点的纵坐标,左侧对应写出即可.
见《学练优》本课时练习“课后巩固提升”第7题
0)的性质
已知点(-3,y1),(1,y2),(
,y3)都在函数y=x2的图象上,则y1、y2、y3的大小关系是________.
方法一:
把x=-3,1,
分别代入y=x2中,得y1=9,y2=1,y3=2,则y1>
y3>
y2;
方法二:
如图,作出函数y=x2的图象,把各点依次在函数图象上标出.由图象可知y1>
方法三:
∵该图象的对称轴为y轴,a>
0,∴在对称轴的右边,y随x的增大而增大,而点(-3,y1)关于y轴的对称点为(3,y3).又∵3>
>
1,∴y1>
y2.
比较二次函数中函数值的大小有三种方法:
①直接把自变量的值代入解析式中,求出对应函数值进行比较;
②图象法;
③根据函数的增减性进行比较,但当要比较的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比较.
见《学练优》本课时练习“课后巩固提升”第2题
探究点三:
0)的图象与性质的简单应用
已知函数y=(m+2)xm2+m-4是关于x的二次函数.
(1)求满足条件的m的值;
(2)m为何值时,抛物线有最低点?
求出这个最低点,这时当x为何值时,y随x的增大而增大?
由二次函数的定义知:
m2+m-4=2且m+2≠0;
抛物线有最低点,则抛物线开口向上,即m+2>
0.
(1)由题意得
∴当m=2或m=-3时,原函数为二次函数;
(2)若抛物线有最低点,则抛物线开口向上,∴m+2>
0,即m>
-2,∴取m=2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x>
0时,y随x的增大而增大.
二次函数必须满足自变量的最高次数是2且二次项的系数不为0;
函数有最低点即开口向上.
见《学练优》本课时练习“课堂达标训练”第9题
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2(a>
0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.
第2课时 二次函数y=ax2(a<
1.会用描点法画二次函数y=ax2(a<
0)的图象;
2.掌握形如y=ax2(a<
上节课我们学习了a>
0时二次函数y=ax2的图象和性质,那么当a<
0时,二次函数y=ax2的图象和性质又会有怎样的变化呢?
二次函数y=ax2(a<
【类型一】二次函数y=ax2(a<
在直角坐标系内,作出函数y=-
x2的图象.
作函数的图象采用描点法,即“列表、描点、连线”三个步骤.
2
y=-
x2
-2
描点和连线:
画出图象在y轴右边的部分,利用对称性,画出图象在y轴左边的部分,如图.
(1)列表应以0为中心,选取x>
0的几个点求出对应的y值;
(2)描点要准;
(3)画出y轴右边的部分,利用对称性,可画出y轴左边的部分,连线要用平滑的曲线,不能是折线.
【类型二】同一坐标系中两种不同图象的判断
当ab>
0时,抛物线y=ax2与直线y=ax+b在同一直角坐标系中的图象大致是( )
根据a、b的符号来确定.当a>
0时,抛物线y=ax2的开口向上.∵ab>
0,∴b>
0.∴直线y=ax+b过第一、二、三象限;
当a<
0时,抛物线y=ax2的开口向下.∵ab>
0,∴b<
0.∴直线y=ax+b过第二、三、四象限.故选D.
本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.
见《学练优》本课时练习“课后巩固提升”第3题
(2015·
山西模拟)抛物线y=-4x2不具有的性质是( )
A.开口向上
B.对称轴是y轴
C.在对称轴的左侧,y随x的增大而增大
D.最高点是原点
此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.
抛物线y=ax2(a<
0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y有最大值0.
见《学练优》本课时练习“课堂达标训练”第2题
【类型二】二次函数y=ax2的开口方向、大小与系数a的关系
如图,四个二次函数图象中,分别对应:
①y=ax2;
②y=bx2;
③y=cx2;
④y=dx2,则a、b、c、d的大小关系为( )
A.a>
b>
c>
d
B.a>
d>
c
C.b>
a>
D.b>
答案:
A
抛物线y=ax2的开口大小由|a|确定,|a|越大,抛物线的开口越小;
|a|越小,抛物线的开口越大.
见《学练优》本课时练习“课堂达标训练”第7题
二次函数y=ax2的图象与几何图形的综合应用
已知二次函数y=ax2(a≠0)与直线y=2x-3相交于点A(1,b),求:
(1)a,b的值;
(2)函数y=ax2的图象的顶点M的坐标及直线与抛物线的另一个交点B的坐标;
(3)△AMB的面积.
直线与二次函数y=ax2的图象交点坐标可利用方程求解,而求△AMB的面积,一般应画出草图进行解答.
(1)∵点A(1,b)是直线y=2x-3与二次函数y=ax2的图象的交点,∴点A的坐标满足二次函数和直线的关系式,
∴
(2)由
(1)知二次函数为y=-x2,顶点M(即坐标原点)的坐标为(0,0).
由-x2=2x-3,解得x1=1,x2=-3,
∴y1=-1,y2=-9,
∴直线与二次函数的另一个交点B的坐标为(-3,-9);
(3)如图所示,作AC⊥x轴,BD⊥x轴,垂足分别为C、D,根据点的坐标的意义,可知MD=3,MC=1,CD=1+3=4,BD=9,AC=1,
∴S△AMB=S梯形ABDC-S△ACM-S△BDM=
×
(1+9)×
4-
1×
1-
3×
9=6.
解答此类题目,最好画出草图,利用数形结合,解答相关问题.
本节课仍然是从学生画图象着手,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.
第3课时 二次函数y=a(x-h)2的图象与性质
1.会用描点法画出y=a(x-h)2的图象;
2.掌握形如y=a(x-h)2的二次函数图象的性质,并会应用;
3.理解二次函数y=a(x-h)2与y=ax2之间的联系.(难点)
涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?
二次函数y=a(x-h)2的图象与性质
【类型一】y=a(x-h)2的顶点坐标
已知抛物线y=a(x-h)2(a≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a,h的值.
∵抛物线y=a(x-h)2(a≠0)的顶点坐标为(-2,0),∴h=-2.又∵抛物线y=a(x+2)2经过点(-4,2),∴a(-4+2)2=2.∴a=
二次函数y=a(x-h)2的顶点坐标为(h,0).
【类型二】二次函数y=a(x-h)2图象的形状
顶点为(-2,0),开口方向、形状与函数y=-
x2的图象相同的抛物线的解析式为( )
A.y=
(x-2)2B.y=
(x+2)2
C.y=-
(x+2)2D.y=-
(x-2)2
因为抛物线的顶点在x轴上,所以可设该抛物线的解析式为y=a(x-h)2(a≠0),而二次函数y=a(x-h)2(a≠0)与y=-
x2的图象相同,所以a=-
,而抛物线的顶点为(-2,0),所以h=-2,把a=-
,h=-2代入y=a(x-h)2得y=-
(x+2)2.故选C.
决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.
见《学练优》本课时练习“课后巩固提升”第1题
【类型三】二次函数y=a(x-h)2的增减性及最值
对于二次函数y=9(x-1)2,下列结论正确的是( )
A.y随x的增大而增大
B.当x>0时,y随x的增大而增大
C.当x=-1时,y有最小值0
D.当x>1时,y随x的增大而增大
因为a=9>0,所以抛物线开口向上,且h=1,顶点坐标为(1,0),所以当x>1时,y随x的增大而增大.故选D.
二次函数y=a(x-h)2图象的平移
【类型一】利用平移确定y=a(x-h)2的解析式
抛物线y=ax2向右平移3个单位后经过点(-1,4),求a的值和平移后的函数关系式.
y=ax2向右平移3个单位后的关系式可表示为y=a(x-3)2,把点(-1,4)的坐标代入即可求得a的值.
二次函数y=ax2的图象向右平移3个单位后的二次函数关系式可表示为y=a(x-3)2,把x=-1,y=4代入,得4=a(-1-3)2,a=
,∴平移后二次函数关系式为y=
(x-3)2.
根据抛物线左右平移的规律,向右平移3个单位后,a不变,括号内应“减去3”;
若向左平移3个单位,括号内应“加上3”,即“左加右减”.
见《学练优》本课时练习“课堂达标训练”第6题
【类型二】确定y=a(x-h)2与y=ax2的关系
向左或向右平移函数y=-
x2的图象,能使得到的新的图象过点(-9,-8)吗?
若能,请求出平移的方向和距离;
若不能,请说明理由.
能,理由如下:
设平移后的函数为y=-
(x-h)2,
将x=-9,y=-8代入得-8=-
(-9-h)2,
所以h=-5或h=-13,
所以平移后的函数为y=-
(x+5)2或y=-
(x+13)2.
即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.
见《学练优》本课时练习“课后巩固提升”第6题
二次函数y=a(x-h)2与几何图形的综合
把函数y=
x2的图象向右平移4个单位后,其顶点为C,并与直线y=x分别相交于A、B两点(点A在点B的左边),求△ABC的面积.
利用二次函数平移规律先确定平移后的抛物线解析式,确定C点坐标,再解由所得到的二次函数解析式与y=x组成的方程组,确定A、B两点坐标,最后求△ABC的面积.
平移后的函数为y=
(x-4)2,顶点C的坐标为(4,0),OC=4.
解方程组
得
或
∵点A在点B的左边,∴A(2,2),B(8,8),∴S△ABC=S△OBC-S△OAC=
4×
8-
2=12.
两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的.
通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左、向右平移,从中领会数形结合的数学思想.
第4课时 二次函数y=a(x-h)2+k的图象与性质
1.会用描点法画出y=a(x-h)2+k的图象;
2.掌握形如y=a(x-h)2+k的二次函数的图象与性质,并会应用;
3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.(难点)
前面我们是如何研究二次函数y=ax2、y=a(x-h)2的图象与性质的?
如何画出y=
(x-2)2+1的图象?
二次函数y=a(x-h)2+k的图象与性质
【类型一】二次函数y=a(x-h)2+k的图象
已知y=
(x-3)2-2的部分图象如图所示,抛物线与x轴交点的一个坐标是(1,0),则另一个交点的坐标是________.
由抛物线的对称性知,对称轴为x=3,一个交点坐标是(1,0),则另一个交点坐标是(5,0).
(5,0)
【类型二】二次函数y=a(x-h)2+k的性质
试说明抛物线y=2(x-1)2与y=2(x-1)2+5的关系.
对抛物线的分析应从开口方向,顶点坐标,对称轴,增减性,及最大(小)值几个方面分析.
相同点:
(1)它们的形状相同,开口方向相同;
(2)它们的对称轴相同,都是x=1.当x<
1时都是左降,当x>
1时都是右升;
(3)它们都有最小值.
不同点:
(1)顶点坐标不同.y=2(x-1)2的顶点坐标是(1,0),y=2(x-1)2+5的顶点坐标是(1,5);
(2)y=2(x-1)2的最小值是0,y=2(x-1)2+5的最小值是5.
对于y=a(x-h)2+k类抛物线,a决定开口方向;
|a|决定开口大小;
h决定对称轴;
k决定最大(小)值的数值.
见《学练优》本课时练习“课堂达标训练”第5题
二次函数y=a(x-h)2+k的图象的平移
将抛物线y=
x2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )
(x-2)2-1
B.y=
(x-2)2+1
C.y=
(x+2)2+1
D.y=
(x+2)2-1
由“上加下减”的平移规律可知,将抛物线y=
x2向下平移1个单位所得抛物线的解析式为y=
x2-1;
由“左加右减”的平移规律可知,将抛物线y=
x2-1向右平移2个单位所得抛物线的解析式为y=
(x-2)2-1.故选A.
二次函数y=a(x-h)2+k的图象与几何图形的综合
如图所示,在平面直角坐标系xOy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k.所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求h,k的值;
(2)判断△ACD的形状,并说明理由.
(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;
(2)分别过点D作x轴和y轴的垂线段DE,DF,再利用勾股定理,可说明△ACD是直角三角形.
(1)∵将抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x+1)2-4,∴h=-1,k=-4;
(2)△ACD为直角三角形.理由如下:
由
(1)得y=(x+1)2-4.当y=0时,(x+1)2-4=0,x=-3或x=1,∴A(-3,0),B(1,0).当x=0时,y=(x+1)2-4=(0+1)2-4=-3,∴C点坐标为(0,-3).顶点坐标为D(-1,-4).作出抛物线的对称轴x=-1交x轴于点E,过D作DF⊥y轴于点F,如图所示.在Rt△AED中,AD2=22+42=20;
在Rt△AOC中,AC2=32+32=18;
在Rt△CFD中,CD2=12+12=2.∵AC2+CD2=AD2,∴△ACD是直角三角形.
见《学练优》本课时练习“课后巩固提升”第9题
通过本节学习使学生掌握二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.
第5课时 二次函数y=ax2+bx+c的图象与性质
1.会用描点法画二次函数y=ax2+bx+c的图象;
2.会用配方法或公式法求二次函数y=ax2+bx+c的顶点坐标与对称轴,并掌握其性质;
3.二次函数性质的综合应用.(难点)
火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用h=-5t2+150t+10表示.经过多长时间火箭达到它的最高点?
化二次函数y=ax2+bx+c为y=a(x-h)2+k的形式
把抛物线y=x2+bx+c的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y=x2-3x+5,则( )
A.b=3,c=7B.b=6,c=3
C.b=-9,c=-5D.b=-9,c=21
y=x2-3x+5化为顶点式为y=(x-
)2+
.将y=(x-
向左平移3个单位长度,再向上平移2个单位长度,即为y=x2+bx+c.则y=x2+bx+c=(x+
,化简后得y=x2+3x+7,即b=3,c=7.故选A.
二次函数由一般式化为顶点式,平移时遵循“左正右负,上正下负”,逆向推理则相反.
见《学练优》本课时练习“课后巩固提升”第4题
二次函数y=ax2+bx+c的图象与性质
【类型一】二次函数与一次函数图象的综合
在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A、B中由函数y=mx+m的图象可