SDJ1配网电容电流测试仪说明书Word文件下载.docx

上传人:b****5 文档编号:16533397 上传时间:2022-11-24 格式:DOCX 页数:16 大小:168.19KB
下载 相关 举报
SDJ1配网电容电流测试仪说明书Word文件下载.docx_第1页
第1页 / 共16页
SDJ1配网电容电流测试仪说明书Word文件下载.docx_第2页
第2页 / 共16页
SDJ1配网电容电流测试仪说明书Word文件下载.docx_第3页
第3页 / 共16页
SDJ1配网电容电流测试仪说明书Word文件下载.docx_第4页
第4页 / 共16页
SDJ1配网电容电流测试仪说明书Word文件下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

SDJ1配网电容电流测试仪说明书Word文件下载.docx

《SDJ1配网电容电流测试仪说明书Word文件下载.docx》由会员分享,可在线阅读,更多相关《SDJ1配网电容电流测试仪说明书Word文件下载.docx(16页珍藏版)》请在冰豆网上搜索。

SDJ1配网电容电流测试仪说明书Word文件下载.docx

0~80%

6.工作电源:

AC220V±

10%50Hz±

1Hz

7.外型尺寸:

485mm×

350mm×

205mm

8.仪器重量:

9kg(带打印机)、7kg(不带打印机)

三、面板及各键功能介绍(图一)

1.测量输出:

输出测量信号,接到PT开口三角两端,不分极性。

2.保险丝:

配置220V/2A保险丝,用于保护仪器故障或过载

3.

仪器的接地端子

4.液晶屏:

显示测试状态和测试数据

5.对比度:

调节液晶屏的显示对比度

6.AC220V:

电源插座/开关

7.返回:

测量后或异常清除后,按该键,返回开始状态。

8.电压选择:

按该键,可在1kV、3kV、6kV、10kV、35kV系统线电压间循环选择

9.方式选择:

按该键,可在3PT、3PT1、3PT2、4PT、4PT1、1PT间循环选择系统PT的接线方式

10.测量/打印:

没有测量时按该键,启动测量;

测量完成后,按该键打印测量结果。

图一仪器面板图

四、仪器操作:

1.先将仪器可靠接地。

2.将测试仪的电流输出端与PT开口三角端连接,对于4PT接线方式的系统,则将仪器的电流输出端与图四或图五中所示的N-L端相连即可。

3.接通电源,开机后仪器自检,自检通过后,在液晶屏上显示“请选择系统线电压及PT接线方式”。

4.“电压选择”键,可以循环选择被测系统线电压:

10kV->

35kV->

6kV->

3kV->

1kV->

10kV。

选择系统线电压后,根据系统的PT实际接线方式和变比,按“方式选择”键循环选择测量方式:

3PT->

3PT1->

3PT2->

4PT->

4PT1->

1PT->

3PT其中:

3PT——3PT接线方式一,组成开口三角的绕组电压为100/3(V),PT变比为

3PT1——3PT接线方式二,组成开口三角的绕组电压为100(V),PT变比为

3PT2——3PT接线方式三,组成开口三角的绕组电压为

(V),PT变比为

4PT——4PT接线方式一,第四个PT的变比为

4PT1——4PT接线方式二,第四个PT变比为

1PT——4PT接线方式一,第四个PT的变比为

5.选择接线方式后,按“测量”键直到液晶屏显示出“正在测量,请稍候”,这时仪器开始进行测量。

测量完成后,液晶屏显示出所测系统的对地电容值和电容电流。

测量完成后,带打印机的型号按“测量/打印”键可以将测量结果打印输出。

如需重新测量,可按“返回”键,返回到开始的状态。

在测量过程前或测量过程中,如出现电压异常报警,当清除电压异常时,可按可按“返回”键,返回到开始的状态。

如需要,可随时按下“电源”开关中断仪器的测试。

五、测量配网电容电流的流程。

一般使用“SDJ-1型配网电容电流测试仪”测量配网电容电流前必须完成以下操作:

1检查测量用的PT高压侧中性点是否安装高阻消谐器,如有,将其短接。

从测量原理可知,选用哪组PT进行测量,我们就只考虑这组PT的接线情况。

而不用考虑系统内的其他PT的情况。

如果系统中有些PT安装高阻消谐器,有些没安装,则可以从没有安装高阻消谐器的PT进行测量,这样可以省去短接消谐器的工作。

2检查消弧线圈是否全部退出运行。

在有电气联系的被测电压等级系统中所有消弧线圈均要退出运行,并非只退出该变电站的消弧线圈。

同时只考虑被测电压等级的情况,无需考虑其他电压等级的情况。

例如,被测变电站A为10kV系统,并通过联络线与变电站B的10kV系统相连,变电站A有2台消弧线圈,变电站B有1台消弧线圈,则测量时有电气联系的这3台消弧线圈均要退出运行;

而35kV系统有无消弧线圈则无需考虑。

3退出PT开口三角的消谐装置。

如果经过实测证明,开口三角所接的某些厂家某些型号的二次消谐装置对测量结果没有影响,则消谐装置可以不退出运行。

一般对于微电脑控制的消谐器,其只有在系统有谐振发生时才动作,该类消谐器一般对测量无影响。

4如果PT二次侧并列运行(很少见),则将其改为单独运行。

5确保将“SDJ-1型配网电容电流测试仪”的电流输出端正确接到图四的开口三角N-L上。

一般在二次的端子编号为N600和L630。

为了确保连接正确,可以按下列方法进行检查:

(1)用万用表分别测量PT二次侧三相电压和开口三角电压;

(2)将三相电压中的最大值减去最小值得到的差和开口三角电压比较,如果两者差不多,就说明找到的开口三角端是正确的;

如果两者差别很大,则说明没有正确找到开口三角端。

例如,测量得到三相电压分别为61V、60V、59.5V,则正确的开口三角电压应为1.5V左右,如果测量得到的开口三角电压仅为0.2V,说明找到的开口三角端不正确或PT开口三角连线已经断开(在现场实测中发现有多个变电站的PT开口三角连线断开情况),如果开口三角电压大于3V,请检查PT一次侧是否安装消谐器。

6选择正确的PT变比,也就是选择正确的PT接线方式。

SDJ-1型配网电容电流测试仪是通过选择PT接线方式和系统电压来达到选择PT变比的作用,这样对于试验人员会更方便、快捷。

PT一般是采用100/3V的二次绕组连接成开口三角,但也有特殊的情况,有些变电站的PT采用100V二次绕组组成开口三角。

为了确保选择变比的正确,可以通过测量组成开口三角的各绕组的电压来确定。

完成以上操作后,就可以运用SDJ-1型配网电容电流测试仪进行准确测量电容电流了。

六、配电网中PT接线方式及PT的变比

配电网中的PT接线方式和PT的变比会对测试仪的测量结果产生很大的影响,如果PT的接线方式和变比选择不正确,测量结果将不是系统的真实电容电流值,而是真实值乘以两变比之商的平方倍。

因此为了测得正确的数据,在测试前必须对配电网中PT的接线方式及PT变比有一个清晰的了解。

本测试仪采用循环选择的方式来选择系统PT的各种接线方式及变比,这样用户无需繁琐地输入各种PT接线方式下的变比,使测量工作更简便、更快捷。

本仪器提供六种“方式”的选择,即3PT、3PT1、3PT2、4PT、4PT1、1PT,每种方式代表一种PT的接线方式和不同的变比,这六种方式基本上包括配电系统中各种常用的PT接线方式。

目前,我国配电网的PT接线方式有以下几种:

6.13PT接线方式:

这种接线方式分“N接地”、“B相接地”两种,分别如图二和图三所示。

对于这两种方式,均从N-L两端注入测试信号。

根据所用PT的不同,组成开口三角的二次绕组可能是100/3(V)、

100(V)或者是100/

(V)绕组,这样,测量时PT的变比分别为:

(其中

为的配电网系统的线电压,如6kV、10kV或35kV)。

这三个变比就分别对应于测试仪中“方式”选择中的3PT、3PT1、3PT2三种方式,通过“方式选择”键来进行方式选择。

图二N接地方式

图三B相接地方式

图二、图三所示的系统运行方式是从开口三角测量系统电容电流时所必须的运行方式,而对于一般的配网系统,并不都是处于这样的运行方式下,例如在系统中还接在消弧线圈、PT高压侧中性点接有高阻消谐器、PT开口三角接有二次消谐装置等。

这时,为了使用SDJ-1型配网电容电流测试仪进行容性电流的测量,必须将运行方式转换为图二或图三所示的运行方式。

常见的采用3PT接线方式的配网其运行方式如图四所示:

图四采用3PT接线方式可能的配网运行方式

6.24PT接线方式

在测量中,如系统有3PT的接线PT,尽量从3PT中测量,尽量避免采用4PT接线方式。

大部分变电站中的4PT的接线方式有两种接法,分别如图五和图六所示。

对于图五中这种4PT的接线方式,组成星形的三个PT的开口三角侧被短接,系统零序电压由第四个PT的测量线圈来测量,各相电压分别从A-N、B-N、C-N端测量。

这种接线方式下,系统单相接地时N-L端的电压为57.7V。

图五4PT接线方式一

图六4PT接线方式二

图八中的接线和图七中的接线唯一区别是在N-L端串接入第四个PT的33V二次线圈,这样当系统单相接地时,N-L两端电压为91V(即57.7V+33.3V)。

在图五和图六中,测量信号都是从N-L端注入。

在图五中,零序PT(即第4个PT)的二次零序绕组是ox-oa绕组,其电压通常为

V,则测量时PT变比为

这种接线方式和变比下,对应于测试仪的“4PT”方式。

也就是说,如果接线方式如图五所示,则在测量电容电流前必须通过按“方式选择”按钮来选择“4PT”方式。

在图六中,零序PT(即第4个PT)的二次零序绕组是由主绕组ox-oa绕组和副绕组oxo-oao串联组成,主绕组ox-oa的电压为

V),副绕组oxo-oao的电压为100/3V,则测量时PT变比为

这种接线方式和变比下,对应于测试仪的“4PT1”接线方式。

其中,

为的配电网系统的线电压,如6kV、10kV或35kV。

对于4PT的接线方式,当被测的三相对地电容小于10微法时(10kV电容电流约为20A),测量结果是准确的。

但当被测电容太大时,测量结果就会随电容的增大而偏差较多。

如果比较准确测量,可将4PT接线的运行方式转变为3PT的运行方式,然后按前面所述的3PT方式进行测量。

将4PT接线的运行方式转变为3PT的运行方式的方法如下:

将第四个PT高压侧短接,并将被短接的开口三角侧打开,从打开两侧注入电流测量即可。

这时4PT接线的运行方式就完全变成了3PT的运行方式,如图七所示。

图七4PT接线方式转变为3PT接线方式测量示意图

6.31PT接线方式(从变压器中性点测量配网电容电流的方法)

6.3.1测量接线

采用SDJ-1型配网电容电流测试仪从变压器中性点或接地变中性点测量配网电容电流的接线如图八所示:

图八从变压器中性点测量电容电流接线图

图八中,Tr为变压器35KV侧绕组,或是10KV系统的接地变,O为变压器中性点,Ca、Cb、Cc分别为三相对地电容,PT是外加的一个电压互感器,AX,ax分别为PT的一、二次绕组,PT的变比为(即从57V的端子进行测量)。

6.3.2测量的操作步骤如下

⑴将仪器接地端子及PT一、二次绕组的X端和x端接地,

⑵将SDJ-1型配网电容电流测试仪的电流输出端接到PT的二次侧(即57V的端子),再将PT的高压端A引一根导线,用绝缘杆引到变压器中性点O。

⑶将测试仪的“系统电压”选为10kV(因为测量用的PT是10kV的)。

⑷PT接线方式选1PT。

⑸开始测量,得到测量结果。

值得注意的是:

如果被测系统是10kV系统,测量结果可以直接读取;

对于其他电压等级,电容量是可以直接读取的,但电容电流测量值要乘上一个该电压和10kV的比值,因为对地电容量一定,电容电流与系统电压成正比关系。

如被测系统为35kV,则真实的电容电流值为测试仪的“显示值”乘以3.5(即35kV/10kV)。

⑹测量完毕,先取下绝缘杆,再收拾试验现场

6.3.3测量注意事项

⑴PT的一、二次绕组及测试仪要接好地。

⑵要使用合格的绝缘杆将引线引到变压器中性点O。

⑶引线与周围的设备及试验人员保持安全距离。

6.3.4外加PT进行测量的必要性

采用上述方法进行配网电容电流测量时要外加一个PT,这是为了将高压和低压进行安全隔离,保证试验人员及测试仪器的安全。

配网系统正常运行时,变压器中性点或接地变中性点的对地电压是比较低的,一般只有几十伏到几百伏。

但如果测量时系统发生单相接地,变压器中性点或接地变中性点的对地电压就上升为相电压,对35kV和10kV系统而言,此时中性点的电压分别为20.2kV和5.8kV,如果不经过PT而直接将仪器引线到中性点进行测量,当系统发生单相接地时,就会有很高的电压加在仪器上,从而危及仪器和试验人员的安全,后果不堪设想。

有了PT的隔离,PT的二次侧电压才200V或58V,测试仪是能承受这样的电压的,对试验人员也是安全的。

所以从安全性考虑,从变压器中性点或接地变中性点测量配网电容电流时采用PT隔离是十分必要的。

七、仪器检验和日常校准

为了确认SDJ-1型配网电容电流测试仪是否正常,可以在PT不带电的情况下对测试仪进行检验和校准。

检验方法如下:

取一个10kV(其他电压等级亦可)的PT,在高压端接入一个已知电容量的电容(耐压大于100V即可,随仪器配备壹只),将二次侧主绕组a-x端(电压为

)与测试仪的电流输出端连接,即从a-x端进行测量。

选择测试仪的系统线电压为“10kV”(如果PT是其他电压等级的,则选择相应的系统线电压)、方式为“1PT”,按“测量”键进行测量,如果测量结果和已知电容的电容量一致,说明该测试仪是正常的,测量是准确的,可以用于现场测量。

八、常见的故障及处理

故障现象

故障原因及解决办法

开机后显示屏无显示

1.AC220V电源接触不良

2.电源保险丝损坏

开机或测量前显示“零序电压异常”

1.检查PT的开口三角电压是否大于20V

2.检查系统是否有单相接地故障的发生

开机或测量后显示“电路开路”

1.接线错误,测量回路开路

2.PT开口三角的二次回路开路

3.电流输出端的保险管损坏

测量后显示“599.99”

1.检查电网的中性点补偿装置是否已退出

2.电网中性点有接地现象

3.测试仪的电流输出端被短路

 

附一:

从PT开口三角测量配网电容电流测量原理

SDJ-1型配网电容电流测试仪从PT开口三角来测量配网电容电流。

其测量测量原理如图二所示。

图九测量原理图

在图九中,从PT开口三角注入一个异频的电流(非50Hz的交流电流,目的为了消除工频电压的干扰),这样在PT高压侧就感应出一个按变比减小的电流,此电流为零序电流,即其在三相的大小和方向相同,因此它在电源和负荷侧均不能流通,只能通过PT和对地电容形成回路,所以图九又可简化为图十。

图十简化物理模型

根据图十的物理模型就可建立相应的数学模型,通过检测测量信号反馈就可以测量出三相对地电容值3C0,再根据公式I=3ωCOUφ(Uφ为被测系统的相电压)计算出配网系统的电容电流。

附二:

测量其他电压等级电网的电容电流

由于该测试仪是从PT的二次侧测量系统的对地电容值,从而计算出系统的电容电流值,因此PT的变比和PT的接线方式直接影响测量结果。

为了便于使用,本仪器不是直接输入PT的变比,而是通过选择“系统电压”和“PT的接线方式”来达到输入变比的目的。

例如,选择“10kV”和“3PT1”的方式,则测试仪默认PT的变比为如果现场测量中PT的变比与测试仪的默认值不同,则必须经过归算才能得到正确的测量结果。

系统对地电容测量值的归算公式为:

也就是说,真实的对地电容值等于测试仪显示值乘以一个修正系数,这个修正系数等于测试仪默认变比和PT真实变比商的平方。

得到电容值后就可以利用公式

计算出系统电容电流值。

使用SDJ-1型配网电容电流测试仪可以测量中性点不接地的任意电压等级电网的电容电流,考虑到仪器使用的方便性,本测试仪仅提供了配电网常见的电压等级(1kV,3kV,6kV,10kV,35kV)以供选择,但本测试仪同样可以应用于其他电压等级的电网。

这时,由于实际的PT变比与测试仪提供选择的变比不同,就存在一个测量结果归算的问题,归算就是将测量结果乘以一个归算系数,具体的归算方法如下:

选择一个与真实电网线电压等级UZ相近的“系统线电压”Un,测量方法和上述介绍的方法完全相同,根据上述的归算公式就可以知道:

将测量出的电容值乘以归算系数(Un/UZ)2就是所测系统真实的电容值,而电容电流的真实值则是显示值乘以(Un/UZ)。

例如,测量电压等级为18.5kV的发电机系统,由于本测试仪没有提供18.5kV系统线电压供选择,可以在测试仪中选择“系统线电压”为10kV进行测量,这时测试仪则以10kV为默认值,而系统实际的PT变比是以18.5kV为基准的,因此必须将电容的测量结果乘以系数(10/18.5)2=0.292后才是真实的电容测量结果,电容电流的真实值则是显示结果乘以(10/18.5)=0.54。

同样,也可以选择“系统线电压”为35kV,但这时电容量的归算系数是(35/18.5)2=3.579,电容电流的归算系数是(35/18.5)=1.892。

附三:

测量实例

1.PT高压侧中性点安装有高阻消谐器。

(10kV系统电容电流测量)

⑴ 现象

用测试仪测量时,发现测量计数直到显示18才得到测量结果,显示结果为0.76微法,这个结果显然不对。

用传统的外接电容间接测量方法得到电容电流为48.6A,两者测量结果相差很远。

原来也怀疑是测试仪的问题,后来对测试仪进行校验证明测试仪是好的。

为了调查此次测量不准确的原因,再到变电站测量现场,结果发现PT的高压侧中性点不是直接接地,而是连接了一个高阻的消谐器后再接地。

为了验证测试仪的是否能准确测量,将该高阻消谐器短接后再用测试仪测量,测量结果为47.8A,与传统方法测量结果吻合。

⑵ 处理措施

将高阻消谐器短接后测量正常。

一般高阻消谐器上的电压为几百伏左右,而且PT的阻抗很大,可以在不停电情况下直接将其短接,但要注意和高压侧保持距离。

2.消弧线圈没有退出。

(35kV系统电容电流测量)

⑴ 现象

在测量时,显示结果为999.9微法,这个结果说明系统的电容电流无穷大。

经检查发现,在其他变电站运行的消弧线圈没有退出运行(因为该35kV系统的环网运行的),退出消弧线圈后再测量,测量结果正常。

退出消弧线圈后再测量。

3.系统的中性点有接地现象。

在某变电站测量时,显示结果为599.99微法,试验人员怀疑没有退出消弧线圈,但该变电站没有安装消弧线圈。

为了证实测试仪没有问题,又到了其他变电站进行电容电流测量,测量结果正确。

该变电站的三相电压对称,可以排除单相接地故障的存在。

经询问该变电站的运行人员,得知该变电站供给较多的厂矿用户,有些用户直接使用10kV电动机,我们怀疑是在用户侧电动机的中性点有接地现象。

对于系统的中性点(包括用户侧)有接地现象,即使是使用传统的间接法测量,也会得到一个错误的结果。

如果采用单相直接接地法测量,测量结果也不是对地电容产生的电容电流,而是叠加了一个中性点接地的那台设备的电流,因而对于这种情况无论是什么方法都不能正确测量电容电流。

查找接地点并消除后再用测试仪测量。

4.PT的开口三角连接线断开,没有形成开口三角。

测量某变电站电容电流时,一段母线测量结果正常,测量二段母线时,结果显示“电路开路”,后经二次人员检测,果然发现组成PT开口三角的连接线断开。

由于PT开口三角仅用于发接地信号,因此值班人员不易发现其断线。

将连接线恢复后再测量。

5.没有退出PT的开口三角侧的消谐器。

未断开开口三角侧的消谐器时测量结果为113A,断开消谐器后测量结果为15.6A,然后用传统的间接法测量结果为15.1A。

该电厂采用的消谐器为老式的消谐器,阻抗比较小,因此对测量结果影响较大。

断开PT开口三角侧的消谐器后再测量。

6.PT二次侧并列运行。

当PT的二次侧并列运行时,一、二段母线的电容电流测量值为17.61A,当断开PT的二次并列开关改为二次单独运行时,测量结果为16.3A。

后用传统的测量方法测量结果为16.1A。

可见当PT的二次侧并列运行时对测量结果有影响。

变电站在正常情况下PT二次侧都是单独运行,并列运行情况只是在特殊的情况下才存在。

将PT二次侧并列运行改为单独运行。

7.没有正确输入PT的变比。

在某变电站使用传统方法和测试仪做35kV系统电容电流测量的比对试验中发现,传统方法测量的结果为3.9微法,而测试仪测量结果为0.44微法,相差很大。

但仔细对比发现,3.9和0.44相差接近9倍的关系,我们怀疑是PT的变比输入和实际PT变比不符。

测试仪中PT变比的输入是通过选择PT的接线方式来实现的。

当时我们在测试仪中选择的是“3PT”接线方式,也就是认为组成开口三角的绕组为标准的100/3V,但经检查PT的开口三角绕组发现,该变电站是采用100V的绕组组成开口三角的(检查中我们通过测量每个绕组的电压发现为100V,而不是100/3V),这说明我们选择的PT变比错了,应该选择测试仪中的“3PT1”方式(说明书中有详细介绍各种PT接线方式对应的PT变比)。

我们选择“3PT1”后再测量,得到的结果为3.96微法,测量结果和传统方法相同。

在大部分的变电站中,PT均采用100/3V的绕组组成开口三角,但也有少数变电站采用上述的100V绕组的情况,试验人员在测量时加以注意。

通过查图纸确定PT的变比,最好通过测量组成PT开口三角的绕组的电压来确定变比。

如果绕组电压为33V,说明是经典的接法,测试

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 制度规范

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1