完整版电磁炉工作原理及电磁炉电路图分析Word文件下载.docx
《完整版电磁炉工作原理及电磁炉电路图分析Word文件下载.docx》由会员分享,可在线阅读,更多相关《完整版电磁炉工作原理及电磁炉电路图分析Word文件下载.docx(7页珍藏版)》请在冰豆网上搜索。
绝缘双栅极晶体管(IusulatedGateBipolarTransistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。
目前有用不同材料及工艺制作的IGBT,但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。
IGBT有三个电极(见上图),分别称为栅极G(也叫控制极或门极)、集电极C(亦称漏极)及发射极E(也称源极)。
从IGBT的下述特点中可看出,它克服了功率MOSFET的一个致命缺陷,就是于高压大电流工作时,导通电阻大,器件发热严重,输出效率下降。
IGBT的特点:
1.电流密度大,是MOSFET的数十倍。
2.输入阻抗高,栅驱动功率极小,驱动电路简单。
3.低导通电阻。
在给定芯片尺寸和BVceo下,其导通电阻Rce(on)不大于MOSFET的Rds(on)的10%。
4.击穿电压高,安全工作区大,在瞬态功率较高时不会受损坏。
5.开关速度快,关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us,约为GTR的10%,接近于功率MOSFET,开关频率直达100KHz,开关损耗仅为GTR的30%。
IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体,是极佳的高速高压半导体功率器件。
目前458系列因应不同机种采了不同规格的IGBT,它们的参数如下:
(1)SGW25N120西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,
所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套10A/1200/1500V以上的快速恢复二极管(D11)后可代用SKW25N120。
(2)SKW25N120西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,
该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。
(3)GT40Q321东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A,内部带阻尼二极管,该IGBT可代用SGW25N120、SKW25N120,代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。
(4)GT40T101东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所
以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321,配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。
(5)GT40T301东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部带阻尼二极管,该
IGBT可代用SGW25N120、SKW25N120、GT40Q321、GT40T101,代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。
(6)GT60M303东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A,内部带阻尼二极管。
(7)GT40Q323东芝公司出品,耐压1200V,电流容量25℃时40A,100℃时20A,内部带阻尼二极管,该IGBT可代用SGW25N120、SKW25N120,代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。
(8)FGA25N120美国仙童公司出品,耐压1200V,电流容量25℃时42A,100℃时23A,内部带阻尼二极管,
该IGBT可代用SGW25N120、SKW25N120,代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。
2.2电路方框图
2.3主回路原理分析
时间t1~t2时当开关脉冲加至IGBTQ1的G极时,IGBTQ1饱和导通,电流i1从电源流过L1,由于线圈感抗不允许电流突变.所以在t1~t2时间i1随线性上升,在t2时脉冲结束,IGBTQ1截止,同样由于感抗作用,i1不能立即突变0,于是向C3充电,产生充电电流i2,在t3时间,C3电荷充满,电流变0,这时L1的磁场能量全部转为C3的电场能量,在电容两端出现左负右正,幅度达到峰值电压,在IGBTQ1的CE极间出现的电压实际为逆程脉冲峰压+电源电压,在t3~t4时间,C3通过L1放电完毕,i3达到最大值,电容两端电压消失,这时电容中的电能又全部转化为L1中的磁能,因感抗作用,i3不能立即突变0,于是L1两端电动势反向,即L1两端电位左正右负,由于IGBT内部阻尼管的存在,C3不能继续反向充电,而是经过C2、IGBT阻尼管回流,形成电流i4,在t4时间,第二个脉冲开始到来,但这时IGBTQ1的UE为正,UC为负,处于反偏状态,所以IGBTQ1不能导通,待i4减小到0,L1中的磁能放完,即到t5时IGBTQ1才开始第二次导通,产生i5以后又重复i1~i4过程,因此在L1上就产生了和开关脉冲f(20KHz~30KHz)相同的交流电流。
t4~t5的i4是IGBT内部阻尼管的导通电流,在高频电流一个电流周期里,t2~t3的i2是线盘磁能对电容C3的充电电流,t3~t4的i3是逆程脉冲峰压通过L1放电的电流,t4~t5的i4是L1两端电动势反向时,因的存在令C3不能继续反向充电,而经过C2、IGBT阻尼管回流所形成的阻尼电流,IGBTQ1的导通电流实际上是i1。
IGBTQ1的VCE电压变化:
在静态时,UC为输入电源经过整流后的直流电源,t1~t2,IGBTQ1饱和导通,UC接近地电位,t4~t5,IGBT阻尼管导通,UC为负压(电压为阻尼二极管的顺向压降),t2~t4,也就是LC自由振荡的半个周期,UC上出现峰值电压,在t3时UC达到最大值。
以上分析证实两个问题:
一是在高频电流的一个周期里,只有i1是电源供给L的能量,所以i1的大小就决定加热功率的大小,同时脉冲宽度越大,t1~t2的时间就越长,i1就越大,反之亦然,所以要调节加热功率,只需要调节脉冲的宽度;
二是LC自由振荡的半周期时间是出现峰值电压的时间,亦是IGBTQ1的截止时间,也是开关脉冲没有到达的时间,这个时间关系是不能错位的,如峰值脉冲还没有消失,而开关脉冲己提前到来,就会出现很大的导通电流使IGBTQ1烧坏,因此必须使开关脉冲的前沿与峰值脉冲后沿相同步。
(1)当PWM点有Vi输入时、V7OFF时(V7=0V),V5等于D6的顺向压降,而当V5
(2)当V5>
V6时,V7转态为OFF,V6亦降至D6的顺向压降,而V5则由C16、D6放电。
(3)V5放电至小于V6时,又重复
(1)形成振荡。
“G点输入的电压越高,V7处于ON的时间越长,电磁炉的加热功率越大,反之越小”。
2.5IGBT激励电路
振荡电路输出幅度约4.1V的脉冲信号,此电压不能直接控制IGBT的饱和导通及截止,所以必须通过激励电路将信号放大才行,该电路工作过程如下:
(1)V8OFF时(V8=0V),V8
(2)V8ON时(V8=4.1V),V8>
V9,V10为低,Q81截止、Q4导通,+18V通过R23、Q4和Q1的E极加至IGBT的G极,IGBT导通。
2.6PWM脉宽调控电路
CPU输出PWM脉冲到由R30、C27、R31组成的积分电路,PWM脉冲宽度越宽,C28的电压越高,C29的电压也跟着升高,送到振荡电路(G点)的控制电压随着C29的升高而升高,而G点输入的电压越高,V7处于ON的时间越长,电磁炉的加热功率越大,反之越小。
“CPU通过控制PWM脉冲的宽与窄,控制送至振荡电路G的加热功率控制电压,控制了IGBT导通时间的长短,结果控制了加热功率的大小”。
2.7同步电路
市电经整流器整流、滤波后的310V直流电,由R15+R14、R16分压产生V3,R1+R17、R28分压产生V4,在高频电流的一个周期里,在t2~t4时间(图1),由于C14两端电压为上负下正,所以V3V5,V7OFF(V7=0V),振荡没有输出,也就没有开关脉冲加至Q1的G极,保证了Q1在t2~t4时间不会导通,在t4~t6时间,C3电容两端电压消失,V3>
V4,V5上升,振荡有输出,有开关脉冲加至Q1的G极。
以上动作过程,保证了加到Q1G极上的开关脉冲前沿与Q1上产生的VCE脉冲后沿相同步。
2.8加热开关控制
(1)当不加热时,CPU17脚输出低电平(同时CPU10脚也停止PWM输出),D7导通,将LM3399电压拉低,振荡停止,使IGBT激励电路停止输出,IGBT截止,则加热停止。
开始加热时,CPU17脚输出高电平,D7截止,同时CPU10脚开始间隔输出PWM试探信号,同时CPU通过分析电流检测电路和VAC检测电路反馈的电压信息、VCE检测电路反馈的电压波形变化情况,判断是否己放入适合的锅具,如果判断己放入适合的锅具,CPU10脚转为输出正常的PWM信号,电磁炉进入正常加热状态,如果电流检测电路、VAC及VCE电路反馈的信息,不符合条件,CPU会判定为所放入的锅具不符
(2)或无锅,则继续输出PWM试探信号,同时发出指示无锅的报知信息(见故障代码表),如30秒钟内仍不符合条件,则关机。
2.9VAC检测电路
AC220V由D17、D18整流的脉动直流电压通过R40限流再经过,C33、R39C32组成的π型滤波器进行滤波后的电压,经R38分压后的直流电压,送入CPU6,根据监测该电压的变化,CPU会自动作出各种动作指令。
(1)判别输入的电源电压是否在充许范围内,否则停止加热,并报知信息(见故障代码表)。
(2)配合电流检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(见加热开关控制及试探过程一节)。
(3)配合电流检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。
“电源输入标准220V±
1V电压,不接线盘(L1)测试CPU第6脚电压,标准为2.65V±
0.06V”。
2.10电流检测电路
电流互感器CT1二次测得的AC电压,经D1~D4组成的桥式整流电路整流、R12、R13分压,C11滤波,所获得的直流电压送至CPU5脚,该电压越高,表示电源输入的电流越大,CPU根据监测该电压的变化,自动作出各种动作指令:
(1)配合VAC检测电路、VCE电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(见加热开关控制及试探过程一节)。
(2)配合VAC检测电路反馈的信息及方波电路监测的电源频率信息,调控PWM的脉宽,令输出功率保持稳定。
2.11VCE检测电路
将IGBT(Q1)集电极上的脉冲电压通过R1+R17、R28分压R29限流后,送至LM3396脚,在6脚上获得其取样电压,此反影了IGBT的VCE电压变化的信息送入LM339,LM339根据监测该电压的变化,自动作出电压比较而决定是否工作。
(1)配合VAC检测电路、电流检测电路反馈的信息,判别是否己放入适合的锅具,作出相应的动作指令(见加热开关控制及试探过程一节)。
(2)根据VCE取样电压值,自动调整PWM脉宽,抑制VCE脉冲幅度不高于1050V(此值适用于耐压1200V的IGBT,耐压1500V的IGBT抑制值为1300V)。
(3)当测得其它原因导至VCE脉冲高于1150V时((此值适用于耐压1200V的IGBT,耐压1500V的IGBT此值为1400V),LM339立即停止工作(见故障代码表)。
2.12浪涌电压监测电路
当正弦波电源电压处于上下半周时,由D17、D18和整流桥DB内部交流两输入端对地的两个二极管组成的桥式整流电路产生的脉动直流电压,当电源突然有浪涌电压输入时,此电压通过R41、C34耦合,再经过R42分压,R44限流C35滤波后的电压,控制Q5的基极,基极为高电平时,电压Q5基极,Q5饱和导通,CPU17的电平通过Q5至地,PWM停止输出,本机停止工作;
当浪涌脉冲过后,Q5的基极为低电平,Q5截止,CPU17的电平通过Q5至地,CPU再重新发出加热指令。
2.13过零检测
当正弦波电源电压处于上下半周时,由D17、D18和整流桥DB内部交流两输入端对地的两个二极管组成的桥式整流电路产生的脉动直流电压通过R40限流再经过,C33、R39C32组成的π型滤波器进行滤波后的电压,经R38分压后的电压,在CPU6则形成了与电源过零点相同步的方波信号,CPU通过监测该信号的变化,作出相应的动作指令。
2.14锅底温度监测电路
该电阻阻值的变化间接反影了加热锅
加热锅具底部的温度透过微晶玻璃板传至紧贴玻璃板底的负温度系数热敏电阻具的温度变化(温度/阻值祥见热敏电阻温度分度表),热敏电阻与R4分压点的电压变化其实反影了热敏电阻阻值的变化,即加热锅具的温度变化,CPU8脚通过监测该电压的变化,作出相应的动作指令
(1)定温功能时,控制加热指令,另被加热物体温度恒定在指定范围内。
(2)当锅具温度高于270℃时,加热立即停止,并报知信息(见故障代码表)。
(3)当锅具空烧时,加热立即停止,并报知信息(见故障代码表)。
(4)当热敏电阻开路或短路时,发出不启动指令,并报知相关的信息(见故障代码表)
2.15IGBT温度监测电路
IGBT产生的温度透过散热片传至紧贴其上的负温度系数热敏电阻TH,该电阻阻值的变化间接反影了IGBT的温度变化(温度/阻值祥见热敏电阻温度分度表),热敏电阻与R8分压点的电压变化其实反影了热敏电阻阻值的变化,即IGBT的温度变化,CPU通过监测该电压的变化,作出相应的动作指令:
(1)IGBT结温高于90℃时,调整PWM的输出,令IGBT结温≤90℃。
当IGBT结温由于某原因(例如散热系统故障)而高于95
(2)℃时,加热立即停止,并报知信息(祥见故障代码表)。
(3)当热敏电阻TH开路或短路时,发出不启动指令,并报知相关的信息(祥见故障代码表)。
(4)关机时如IGBT温度>
50℃,CPU发出风扇继续运转指令,直至温度<
50℃(继续运转超过30秒钟如温度仍>
50℃,风扇停转;
风扇延时运转期间,按1次关机键,可关闭风扇)。
(5)电磁炉刚启动时,当测得环境温度<
0℃,CPU调用低温监测模式加热1分钟,30秒钟后再转用正常监测模式,防止电路零件因低温偏离标准值造成电路参数改变而损坏电磁炉。
2.16散热系统
将IGBT及整流器BG紧贴于散热片上,利用风扇运转通过电磁炉进、出风口形成的气流将散热片上的热及线盘L1等零件工作时产生的热、加热锅具辐射进电磁炉内的热排出电磁炉外。
CPU15脚发出风扇运转指令时,15脚输出高电平,电压通过R27送至Q3基极,Q3饱和导通,VCC电流流过风扇、Q3至地,风扇运转;
CPU发出风扇停转指令时,15脚输出低电平,Q3截止,风扇因没有电流流过而停转。
2.17主电源
AC220V50/60Hz电源经保险丝FUSE,再通过由RZ、C1、共模线圈L1组成的滤波电路(针对EMC传导问题而设置,祥见注解),再通过电流互感器至桥式整流器BG,产生的脉动直流电压通过扼流线圈提供给主回路使用;
AC1、AC2两端电压除送至辅助电源使用外,另外还通过印于PCB板上的保险线P.F.送至D1、D2整流得到脉动直流电压作检测用途。
注解:
由于中国大陆目前并未提出电磁炉须作强制性电磁兼容(EMC)认证,基于成本原因,内销产品大部分没有将CY1、CY2装上,L1用跳线取代,但基本上不影响电磁炉使用性能。
2.18辅助电源
AC220V50/60Hz电压接入变压器初级线圈,次级两绕组分别产生2.2V、12V和18V交流电压。
12V交流电压由D19~D22组成的桥式整流电路整流、C37滤波,在C37上获得的直流电压VCC除供给散热风扇使用外,还经由V8三端稳压IC稳压、C38滤波,产生+5V电压供控制电路使用。
18V交流电压由D15组成的半波动整流电路整流、C26滤波后,再通过由Q9、R33、DW9、C27、C28组成的串联型稳压滤波电路,产生+18V电压供IC2和IGBT激励电路使用。
2.19报警电路
电磁炉发出报知响声时,CPU1脚输出幅度为5V、频率4KHz的脉冲信号电压至蜂鸣器BZ1,令BZ1发出报知响声。