高中数学 从集合大小的定义到数学结构素材Word格式.docx

上传人:b****4 文档编号:15881654 上传时间:2022-11-16 格式:DOCX 页数:7 大小:23.88KB
下载 相关 举报
高中数学 从集合大小的定义到数学结构素材Word格式.docx_第1页
第1页 / 共7页
高中数学 从集合大小的定义到数学结构素材Word格式.docx_第2页
第2页 / 共7页
高中数学 从集合大小的定义到数学结构素材Word格式.docx_第3页
第3页 / 共7页
高中数学 从集合大小的定义到数学结构素材Word格式.docx_第4页
第4页 / 共7页
高中数学 从集合大小的定义到数学结构素材Word格式.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

高中数学 从集合大小的定义到数学结构素材Word格式.docx

《高中数学 从集合大小的定义到数学结构素材Word格式.docx》由会员分享,可在线阅读,更多相关《高中数学 从集合大小的定义到数学结构素材Word格式.docx(7页珍藏版)》请在冰豆网上搜索。

高中数学 从集合大小的定义到数学结构素材Word格式.docx

关于用一一对应的方法来判断两个集合之间的大小关系,已经有许多文章谈过了,我只在这里再简单地重复一遍:

给定两个集合A和B,

1)如果存在A到B的一个单射f:

A→B(也就是说A和B的一个子集有一一对应),那么我们称A的“基数”(或“势”)不大于B的“基数”,简称A不大于B,或A中元素个数不多于B中元素;

2)如果存在A到B的一个一一对应f:

A→B,那么我们称A和B的“基数”相同,简称A和B一样大,或A中元素个数和B中元素个数相同;

3)(施罗德-伯恩斯坦定理)如果A不大于B,且B不大于A,那么A和B一样大。

由这个定义可以得出一些推论:

1)任何一个无限集都至少和自然数集合一样大;

2)两个集合的并集同这两个集合中比较大的那个一样大,特别地,两个同样大小的集合的并集和它们本身一样大;

3)两个集合的积集同这两个集合中比较大的那个一样大。

但是这种判断集合大小的方法得出的结论,比如说上面所说的“自然数和正偶数一样多”,甚至于“自然数和有理数一样多”,或者“一条直线上的点的个数和一个平面上的点的个数一样多”,总会让不熟悉集合论的人感到很别扭,一个集合的一部分怎么会和自己一样大?

欧几里得的第五公理说:

“整体大于部分。

”在《几何原本》中,公理的地位要高于公设,前者是“放之四海而皆准”的,而后者却只是几何(也就是当时的数学)中的“不证自明”的命题。

欧几里得也搞错了?

数学家们为什么不按照符合大家直觉的方法来规定集合的大小?

他们似乎喜欢故意发明出一些和常识相悖的稀奇古怪的概念和方法,让人上当后自己却在暗地里窃窃偷笑别人的不高明。

这可就冤枉了数学家们,如果有既符合常识和直觉,又严格且有用的关于集合大小的定义,数学家一定是非常乐意接受的。

但是如果这种“常识”只是象爱因斯坦所言的,是“十八岁以前所积累的偏见”,那么就不适合于作为严格的数学定义了。

我想首先讨论一下数学家被迫采用一一对应的方式来比较集合大小的原因。

二、集合大小定义的几个基本要求

作为集合大小的定义,应该满足什么样的基本要求?

我们当然要尽可能地使它符合一般的关于“大小”的常识和直觉,其中有许多是要比“整体大于部分”更加要紧的。

首先,一个集合的大小只应该取决于这个集合本身。

我们知道一个集合可以用多种方法来构造和表示,比如说,

A={小于等于2的正整数}

B={1,2}

C={x2-3x+2=0的根}

其实都是同一个集合,

D={n|n为自然数,且方程xn+yn=zn有xyz≠0的整数解}

又怎么样呢?

1996年英国数学家怀尔斯证明了费尔马大定理,所以集合D和上面的集合A、B、C是同一个集合,它里面有两个元素1和2。

我们记得,一个集合由它所含的元素唯一决定,所以它的大小也不能取决于它被表示的方法,或者被构造的途径,它只应该取决于它本身。

一个集合得和自己一样大,这个没有什么好说的;

其次,如果集合A不小于(也就是说或者大于,或者一样大)集合B,而集合B也不小于集合A,那么它们就必须是一样大的;

第三,如果集合A不小于集合B,而集合B又不小于集合C,那么集合A就必须不小于集合C。

在数学上,我们称满足这三个条件的关系为“偏序关系”(注:

严格地说,这个偏序关系并不定义在集合之间,而是定义在集合按“一样大”这个等价关系定义出的等价类之间,关于偏序关系的严格定义的叙述和上面所说的也有区别,但这些问题在这里并不要紧,你如果看不懂这个注在讲什么也不要紧)。

如果一个关于集合大小的定义违反了上面所说的三条之一,这个定义的怪异程度一定会超过上面使用一一对应原则的定义!

举个例子,比如说我对某位科幻小说作家的喜爱程度就是一个偏序关系。

如果我喜欢阿西莫夫胜于喜欢凡尔纳,而喜欢凡尔纳又胜于喜欢克拉克,那在阿西莫夫和克拉克中,我一定更喜欢阿西莫夫。

不过一个偏序关系并不要求任意两个对象都能相互比较。

比如说刘慈欣的水平当然不能和克拉克这样的世界级科幻大师比,但是“喜欢”是一种很个人的事情,作为一个中国人,我对中国的科幻创作更感兴趣──所以似乎不能说我更喜欢克拉克,但也不能说我更喜欢刘慈欣,而且也不能说同样喜欢,因为喜欢的地方不一样──所以更确切地也许应该说,他们俩之间不能比较。

但偏序关系中存在这样的可能性,有一个对象可以和两个不能相互比较的对象中的每一个相比较,比方说我喜欢阿西莫夫胜过刘慈欣和克拉克中的任一个。

不过作为集合大小的定义,我们希望能够比较任意两个集合的大小。

所以,对于任何给定的两个集合A和B,或者A比B大,或者B比A大,或者一样大,这三种情况必须有一种正确而且只能有一种正确。

这样的偏序关系被称为“全序关系”。

最后,新的定义必须保持原来有限集合间的大小关系。

有限集合间的大小关系是很清楚的,所谓的“大”,也就是集合中的元素更多,有五个元素的集合要比有四个元素的集合大,在新的扩充了的集合定义中也必须如此。

这个要求是理所当然的,否则我们没有理由将新的定义作为老定义的扩充。

三、“整体大于部分”原则的困难和一一对应原则的优点

满足上面几条要求的定义,最简单的就是认为无限就只有一种,所有的无限集合都一样大,而它们都大于有限集合。

这其实是康托尔创立集合论以前数学家的看法,所以康托尔把无限分成许多类的革命性做法使得数学家们大吃了一惊。

但是这样的定义未免太粗糙了一点,只不过是把“无限集合比有限集合大”换了种方法说罢了,我们看不出这有什么用处。

没有用的定义不要也罢──再说在这种定义中,自然数和正偶数也一样多,因为所对应的集合都是无限集合。

如果我们在上面几条要求中,再加上“整体大于部分”这条要求会怎么样呢?

我们想像平面上有条射线,射线的一端是原点,然后在上面我们每隔一厘米画一个点,并在每个点旁边标上1、2、3……等,这样就有无穷个点。

那么这个点集和自然数集合比较大小的结果应该如何?

按照我们前面的要求,任何两个集合都应该可以比较大小的。

我们很容易想像到,这其实是一条数轴的正半轴,上面的点就是代表自然数的那些点,所以这些点的个数应该和自然数的个数相同。

而且,按照“整体大于部分”的规定,那些标有10、20、30……的点的集合比所有点的集合要小。

但是“一厘米”实在是非常人为的规定,如果我们一开始就每隔一分米画一个点,顺着上面的思路,这些点的个数也该和自然数一样多,但是这恰好是按一厘米间隔画点时标有10、20、30……的点啊!

那些点始终是一样的,所以它们的个数不应该取决于在它们的旁边标记的是“1、2、3……”还是“10、20、30……”。

再举一个例子。

假设我给你一个大口袋,里面有无限多个小口袋,上面按照自然数标了号1、2、3……。

在1号口袋中有1粒豆子,2号口袋中有2粒豆子,……依次类推。

现在我当着你的面拿掉1号小口袋,那么剩下的小口袋数和原来的相比如何?

如果按照“整体大于部分”的观点,应该是少了,少一条。

但是如果我当初就背着你拿掉1号口袋,然后从其他每个小口袋中取出一粒豆子,再把小口袋上的号码改掉,2改成1,3改成2……,然后再把大口袋给你,你显然不会知道我做了手脚,因为这时大口袋里的东西和原来没有任何区别,所以小口袋的数量和原来一样多。

这就和“少一条”矛盾了,从小口袋里拿一粒豆子或者是涂改上面的标号不应该改变口袋的数量。

大家明白我是打了一个比方,大口袋就是一个集合。

按照上面的要求,集合的大小只应该取决于集合本身,而不应该取决于集合的表示方法或构造方法,也就是得到集合的过程。

你拿到了大口袋,也就是就应该知道里面小口袋的数量,而不用知道我是否做过手脚。

这样的例子可以举很多。

我们发现,如果坚持“整体大于部分”的话,固然可以使得某些集合和自己的子集相比较时,比如比较自然数和正偶数的个数时,符合“直观”和“常识”。

但是更多的非常直观的东西和常识却都会变成错误的。

比如说,x"

=x+1这样一个数轴上的坐标平移,会将坐标上的点集{1,2,3……}变为{2,3,4……},一个坐标平移居然可以变动点集中元素的个数!

“元素可以一一对应的两个集合大小相同”这条原理的失效,会使得我们在比较两个元素很不相同的集合时无所适从:

怎样不使用一一对应的方法来比较自然数和数轴上(0,1)区间中点的个数?

在上面的两个例子中我们会有这样的感觉,对于无限集合来说,从部分中似乎可以“产生”出整体来。

比如射线上的每隔一厘米画一个点的例子,如果我们把不是10的倍数的点去掉,然后将平面“收缩”到原来尺度的十分之一,我们就重新得到了原来的那个点集。

在装豆子的口袋的例子中,只要从去掉1号口袋后剩下的那些袋子中拿去一粒豆子,我们就又得到了原来的那个大口袋。

这暗示了无限集合的一个重要特点:

从某种意义上来说,它和自己的一部分相似。

事实上,无限集合的一个定义就是“能和自己的一部分一一对应的集合”。

所以在无限集合大小的比较中,违反了“整体大于部分”的原则并不奇怪,因为这恰好就是无限集合的特征。

如果使用一一对应的比较方法,我们发现它满足所有第二节中提出的关于集合大小定义的要求。

而且除了“整体大于部分”这个我们已经解释过的不适用的原则外,不违反其他的直觉和常识。

事实上用一一对应的方法来比较两个集合的大小,也是非常符合直观的。

如果有两盒火柴,我们想比较哪盒中的火柴数量更多,我们大可不必去数出每盒中火柴的数量,那样很容易出错。

其实只要从不断地从两盒火柴中拿掉相同数量的火柴,最后如果同时两盒都不剩下火柴,那么就说明数量一样多,否则就是还剩有火柴的那盒比较多。

而更重要的是,这样的定义非常有用。

康托尔在提出他关于集合的基数理论后,非常简洁地证明了“几乎所有实数都是超越数”,而那个时候数学家连一个超越数的实例都还没有找到!

引起第三次数学革命的罗素悖论也是从基数理论中产生出来的。

虽然集合的基数理论现在已经为一般的数学系学生和许多数学爱好者所熟悉,数学家们还是能从中找到非常有趣和深奥的课题,比如说“超大集合理论”,这是关于一些基数大得匪夷所思的集合的理论。

我们知道对于任何一个集合A,它的幂集P(A)(也就是它所有子集构成的集合)一定比它本身大,所以我们可以构造一系列的集合A,P(A),P(P(A))……一个比一个大,所以没有最大的集合。

而“超大集合理论”声称,存在一个集合B,比前面这一系列集合中的每个都要大!

所以说,使用一一对应原则来定义集合大小,是数学家迫不得已和最佳的选择。

四、直觉的合理性和数学结构

在文章的最前面我们提到过,从直觉上说来,自然数的个数应该是正偶数的两倍,这里难道没有一点合理的因素在内吗?

有时我们会听到数学家说:

“几乎所有的自然数都不是素数。

”如果按照一一对应的原则,素数和自然数是一样多的(第一个素数2对应1,第二个素数3对应2,第三个素数5对应3,……第n个素数对应n,……),这不矛盾吗?

数学并不依赖于直觉,但是尊重直觉,直觉中常常包含着合理的因素。

受过数学训练的人对数学的直觉一般来说要比其他人更有合理性,数学大师能够用直觉把握住很深刻的数学理论,他们有时会说:

“虽然我还没有一个严格证明,但是我知道它是对的。

”数学大师的直觉当然不是每个人都能模仿的,但是我们的确可以改变对一些数学物体的想像方法,来改善自己的直觉,使

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1