霍尔系数和电导率测量资料.docx

上传人:b****3 文档编号:1541852 上传时间:2022-10-23 格式:DOCX 页数:12 大小:421.23KB
下载 相关 举报
霍尔系数和电导率测量资料.docx_第1页
第1页 / 共12页
霍尔系数和电导率测量资料.docx_第2页
第2页 / 共12页
霍尔系数和电导率测量资料.docx_第3页
第3页 / 共12页
霍尔系数和电导率测量资料.docx_第4页
第4页 / 共12页
霍尔系数和电导率测量资料.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

霍尔系数和电导率测量资料.docx

《霍尔系数和电导率测量资料.docx》由会员分享,可在线阅读,更多相关《霍尔系数和电导率测量资料.docx(12页珍藏版)》请在冰豆网上搜索。

霍尔系数和电导率测量资料.docx

霍尔系数和电导率测量资料

实验5霍尔系数和电导率测量

1.实验目的

⑴通过实验加深对半导体霍尔效应的理解;

⑵掌握霍尔系数和电导率的测量方法,了解测试仪器的基本原理和工作方法。

2.实验内容

测量样品从室温至高温本征区的霍尔系数和电阻率。

要求:

⑴判断样品的导电类型;

⑵求室温杂质浓度,霍尔迁移率;

⑶查阅迁移率或霍尔因子数据,逼近求解载流子浓度和迁移率;

⑷用本征区RhT数据,由(21)式编程计算样品材料的禁带宽度;

⑸本征导电时,▽qn(»Ln十》lp)。

卩与T^2成正比,所以■=C"T"2exp-Eg「2kT,那么由ln二T32~1T或由In二~1T实验曲线的斜率求出禁带宽度Eg。

⑹对实验结果进行全面分析、讨论。

 

3.实验原理

⑴霍尔效应

如图1所示的矩形半导体,在X方向通过一密度为jx的电流,在z方向加一均匀磁场

ey。

这就是大家熟知的霍尔

(磁感应强度为B),由于磁场对运动电荷(速度为Vx)有一个洛伦兹力,在Y方向将引起

电荷的积累,在稳定情况下,将形成平衡洛伦兹力的横向电场效应。

其霍尔系数定义为

Ey

JXBz

如果计及载流子速度的统计分布,关系式变为

式中,q是电子电荷,b=%..」p,%,'p分别是电子和空穴的迁移率,Jh是霍尔迁

移率。

(卩円/卩\,卩称为霍尔因子,其值与能带结构和散射机构有关。

例如非简并半导体,长声学波散射时,」Hr亠=3二8=1.18;电离杂质散射时,亠-1.93;对于高简并半导体和强磁场条件时,.L:

h.*=1

对于主要只有一种载流子的n型或p型半导体,电导率可以表示为-qn"n或

二二qp%,这样由(4)或(5)式有

%卡'8

由上述关系式可见,霍尔系数和电阻率的联合测量能给出载流子浓度和霍尔迁移率,而

且结合迁移率对掺杂浓度、温度的数据或霍尔因子掺杂浓度、温度的数据,可以逼近求得载

流子浓度和载流子迁移率。

Rh给出。

但是随着温度升高,进入过渡区和本征区,在这种情况下,少数载流子的影响不

n、p之值。

这时

10

11

可忽略,霍尔系数由(6)式决定。

以至单独的霍尔测量数据不能给出两种载流子浓度,必须结合高温下电导率数据、室温霍尔以及迁移率数据,才能给出

n型半导体:

n=nsp

p型半导体:

p二ps•n

在只计入晶格散射时,电导率为

-二qnjlaqp%p

将(9)式代入(11)式可得

 

同理,将(10)式代入(11)式可得

p=(—bns(⑷

申)

p型半导体:

n=!

-[■—-ps/(b+1)(15)

艸丿/

图2铢化锢霍尔系数与温度的关系

式中b-"l,*Lp。

JLn、A_p分别为电子、空穴的晶格散射迁移率。

这样由、二T、Rhs实验数据及查阅的迁移率数据,在b已知时,就可以求出过渡区和本征区的nT、pT了。

此外,p型样品的R,T实验数据还能求出b值。

对于p型样品,当温度在杂质导电范围内时,导带的电子很少,p.nb2,因此Rh0。

温度升高后,本征激发的载流子随之产生,电子数量逐渐增加,当p二nb2时,讯=0;

温度再升高,则有p:

nb2,Rh<0。

所以,p型半导体当温度从杂质导电范围过渡到本征范围时,Rh将改变符号,并出现如图2所示的极值。

这样,由;:

RH.n=0可得

而室温下Rhs二1qNa,所以

RHmaj:

b-117

Rhs一4b

利用这个关系式就可求得b。

因此,p型半导体,由饱和区的ps及高温下的二T以及

查阅的迁移率数据,就可由(14)、(15)式得到n(T卜p(T)。

从而可以应用本征区载流子浓度积的理论公式,进而求得材料的禁带宽度Eg,即

np二NcN/exp-EgkT二CT3exp-EgkT18

不过,求Eg的方法还可以简化。

因为进入本征区以后,电子和空穴成对地产生,所以

导带中的电子浓度n等于价带中的空穴浓度p。

又高温区只计及晶格散射,可忽略霍尔因子对温度的变化。

这样(6)式变为

19

1-b

qn1b

通常,在一定的温度范围内,b与温度无关。

于是本征区的霍尔系数又可给出载流子浓度。

因此,(18)式可以写为

于是,InRh/2〜;关系曲线的斜率将给出禁带宽度Eg。

式中k为玻尔兹曼常数,C及

C则表示导带、价带有效状态密度Nc、Nv中与温度T无关的常数及其它与T无关的常数

所构成的参数。

低温杂质电离区,Rh、二测量可得杂质电离能和低温jh以及杂质补偿度[2]。

⑵霍尔电压及电阻率测量

1样品及计算公式

与霍尔测量相配合的电阻率测量有两探针法和范得堡法。

为了实现霍尔电压及电阻率的

准确测量,常采用四个点接触电极位于周边的范德堡薄膜试样。

若其测量花样具有对称性,

如圆形或方形等,且四点接触电极作周边对称放置,那么计算公式会有很简单的形式。

作电阻率测量时,电极按图3(a)配置。

由附录

(1)证得电阻率及薄层电阻Rs表示

图3范懾堡结拘电导率猊翟尔测量电板配置示意图

O表示电流电极•表亦电压电极

(a)B=0(b)B垂宜于纸面

圆范徐堡结构中电流线〔实藝)和筹位线(虚线)分布图

O表示电流电根•我示电庄电根

十字形结构的薄层电阻率及薄层电阻,仍可用(22)、(23)式来进行计算。

若该结构理想的

图5对称十字形结拘因接触臂层压引起的归一化误差E

范德堡薄层电阻用Rs(计算)表示,其测量误差就定义为E=1-尺计算Rs。

图5示出了E对十字形臂长S与宽度A之比的关系曲线。

由图可见,当AS=1时,E=0.001,测量精度是很高的了。

十字形结构同样也对霍尔测量有利。

不仅电极简化,易于制作,而且较之非理想点接触

结构,其霍尔系数误差显著减小。

对于AS=1的样片,B=1特斯拉时,Vh对B的非线性

误差为0.3%。

当霍尔角正切小于0.1时,Rh的误差与B无关,只与样品的几何尺寸有关⑷。

另外,与矩形或圆形的点接触电极的样品相比,在所给电流相同时,电流密度较小,加之样品导热性较好,因而焦耳热减小,温度梯度减小。

从而减小了因热磁效应引入的霍尔电压测量误差以及电极接触噪声。

2霍尔电压的直流测量法

与霍尔效应同时存在的热磁效应,主要有爱廷豪森效应、里纪-勒杜克效应和能斯脱效应。

爱廷豪森效应是指样品在X方向的电流I和Z方向磁场B作用下,在它的Y方向将产生温度差,从而引入温差电势Ve。

Ve与I和B的乘积成正比,其符号与I和B的方向有关。

里纪-勒杜克效应和能斯脱效应,均是在X方向存在热流Q,在Z方向磁场B作用下所

产生的效应。

不同的是,前者在Y方向产生温度差而引起温差电动势Vr,其符号与B的方向有关;后者是直接在Y方向引入电势差Vn,Vn二QB,其符号也与B有关。

如果还有外加的温度梯度,必然引入一个环境温差电误差电压Vt。

除此之外,还应考虑在零磁场下,霍尔电极不在同一等位面上所产生的失配电势V。

V0=1R(R是不等势面间在电流方向的电阻),其符号与I的方向有关。

这样,在霍尔电极间测得的电压不仅是Vh,还将包含有Ve、Vr、Vn、V、V。

这些误差电压的贡献。

在这些误差电压中,只有M=IB,Vr、Vn、Vo只与B或I有关,Vt与I、B

均无关。

因此,通过改变电流极性及磁场方向可以消除表1的极性组合进行测量可以导出:

表1霍尔系数测量时电流和磁场的极性组合

极性

霍尔端测得的电压

B+I+

Vm1=Vh+%+Ve+必+Vr

BJ+

Vm2=-Vh-Ve+Vt-Vn-Vr

B+l_

Vm3=-Vh-V0-Ve+Vt+Vn+Vr

B丄

Vm4=VH-V°+Ve+Vr-乂十«

显然,在直流测量中不能消除爱廷豪森误差电压Ve,不过它一般很小,对于我们实验中

导热性尚好的十字形样品较小,较为接近等温条件,故可认为爱廷豪森效应的影响

可以忽略。

因此霍尔系数的测量误差由有关各测量量的测量误差所引起,即

尽VH:

tIB

HH26

RhVhtIxB

⑶测准条件分析

从(26)式看出,要想准确测量Rh,就要设法准确测量Vh、I、B及t。

然而Vh与B、I、t均有关系,是集中体现测量误差的量。

因此我们从测准Vh着手进行分析。

首先要求样品材料均匀,几何尺寸严格对称,电极要求欧姆接触,且样品要正确置于磁场中,并要求光屏蔽。

如果样品不均匀,缺乏对称性,交换电压、电流电极测得的Rh1、Rh2偏差_10%,那

么进一步研究就没有意义;如果电极不是欧姆接触,测得的Vh就不真实;如果样品放置处

的磁场不均匀,样品表面不垂直于B,或其测得的B不正好是样品放置处的磁感应强度,

那么Vh测量必然引入误差;不进行光屏蔽,光电导、光生伏特效应也会引入误差。

因此霍尔系数测量必须用材料均匀、电极欧姆接触、严格对称的范德堡结构,并且垂直置于均匀且

得到准确度量的暗磁场中。

以上是测准Vh的基本条件,此外还要求是弱磁场、小电流。

在直流测量法中,最终给出的测量误差:

Vh,主要是爱廷豪森误差电压Ve的贡献。

要减小Ve,就应该是小电流、弱磁场,以使热磁效应尽可能小。

而且弱磁场条件还能减小B

对Vh的非线性误差。

对霍尔电压与接触点尺寸及几何形状函数关系的研究得出⑷,霍尔电

位2可以用霍尔角正切"B的幕级数表示:

“:

;冷「2•…27

对于几何形状对称的范德堡结构,霍尔电压只含有的寄次幕,于是有

Vh二Vh』BVh3E28

方程中的第一项是常规的霍尔效应,高次项表示B对Vh的非线性关系。

可见弱磁场条

件正是减小B对Vh的非线性误差所要求的。

前述A=1的十字形对称范德堡结构,当霍

尔角正切JB:

:

0.1时,Rh误差与B无关。

这说明了弱磁场条件对Rh正确测量的重要意义。

因此,通常的弱磁场条件是,:

:

1。

对于硅、锗半导体来说,B:

:

:

仃为弱场,不过人们

常常取B为0.1~0.2T。

电流一般取1mA左右,以减小电流的热效应、减小热磁效应导致的Ve,以尽可能地减

小-"'Vh。

同样,小电流亦有益于电阻率的准确测量。

因为小电流能有效的减小少子注入和电流热效应引入的误差,对电阻率温度系数大的半导体尤其应该如此。

图6NDWHG48型变温霍尔效应实验仗原理图

4.实验装置

NDWH648型变温(变温范围:

77.4K——400K)霍尔效应实验仪是为测量霍尔效应-

温度特性而设计制作的实验仪器。

它由电磁铁、恒流源、加热器、加热控制器、样品恒温器、

数据采集、转换、传输系统和计算机等组成(原理图见图6)。

其励磁电流调节范围是0到6A,

磁场强度调节范围是0到400mT,霍尔电势分辨率为1卩V,样品电流为1mA。

 

图gTP-B瞧密穩就电源面板

YP-6B精密稳流电源前、后面板如图9、图10所示。

圈10YP-&B精密稳流电源背面板

5.实验步骤

⑴关闭电源开关;

⑵检查NDWH648型变温霍尔效应实验仪各个接口(通讯接口与电源接口)缆线的连接状

况,各项检查无误后,分别接通NDWH648型变温霍尔效应实验仪、YP-6B精密稳流电源

和计算机的电源开关。

⑶霍尔系数的测量

5从液氮中取出样品恒温器,快速将恒温器上的定位螺钉对准加热器上的缺口插入加

-温度曲线,分

热器,稍等片刻后可在屏幕上看见数据和以四种不同颜色绘制的电压别表示BI.、BI_、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1