制动器设计初稿待1定Word文件下载.docx

上传人:b****1 文档编号:15351165 上传时间:2022-10-29 格式:DOCX 页数:18 大小:867.76KB
下载 相关 举报
制动器设计初稿待1定Word文件下载.docx_第1页
第1页 / 共18页
制动器设计初稿待1定Word文件下载.docx_第2页
第2页 / 共18页
制动器设计初稿待1定Word文件下载.docx_第3页
第3页 / 共18页
制动器设计初稿待1定Word文件下载.docx_第4页
第4页 / 共18页
制动器设计初稿待1定Word文件下载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

制动器设计初稿待1定Word文件下载.docx

《制动器设计初稿待1定Word文件下载.docx》由会员分享,可在线阅读,更多相关《制动器设计初稿待1定Word文件下载.docx(18页珍藏版)》请在冰豆网上搜索。

制动器设计初稿待1定Word文件下载.docx

3.4摩擦衬片起始角14

3.5制动器中心到张开力F0作用线的距离e14

3.6制动蹄支撑点位置坐标a和c14

3.7计算制动轮缸直径14

第4章制动器主要零件的结构设计17

4.1制动鼓17

4.2制动蹄18

4.3制动底板19

4.4制动蹄的支承19

4.5制动轮缸19

第5章制动性能分析20

5.1制动性能评价指标20

5.2制动效能20

5.3制动效能的恒定性20

结论21

致谢22

参考文献23

附录124

 

引言

制动系的功用是使汽车以适当的减速度降速行驶直至停车,在下坡行驶时使汽车保持适当的稳定车速,使汽车可靠地停在原地或坡道上。

制动系至少有行车制动装置和驻车制动装置。

前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。

除此之外,有些汽车还设有应急制动和辅助制动装置。

应急制动装置利用机械力源(如强力压缩弹簧)进行制动。

在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。

同时,在人力控制下它还能兼作驻车制动用。

辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。

行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。

防止制动时车轮被抱死,有利于提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来制动防抱死系统(ABS)在汽车上得到很快的发展和应用。

此外,含有石棉的摩擦材料,因存在石棉有致癌公害问题已被逐渐淘汰,取而代之的是各种无石棉型材料并相继研制成功[1]。

第1章制动器原理介绍

制动器就是刹车。

是使机械中的运动件停止或减速的机械零件。

俗称刹车、闸。

制动器主要由制动架、制动件和操纵装置等组成。

有些制动器还装有制动件间隙的自动调整装置。

为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。

有些制动器已标准化和系列化,并由专业工厂制造以供选用。

1.1制动器分类

制动器分为行车制动器(脚刹),驻车制动器(手刹)。

在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。

若行车制动失灵时才采用驻车制动。

当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。

停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。

1.2制动系分类

摩擦式制动器。

靠制动件与运动件之间的摩擦力制动。

非摩擦式制动器。

制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调节制动力矩的大小)以及水涡流制动器等。

制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。

可用一种简单的液压制动系统示意图来说明制动系统的工作原理。

一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。

在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。

制动蹄的外圆面上装有摩擦片。

制动底板上还装有液压制动轮缸,用油管与装在车架上的液压制动主缸相连通。

主缸中的活塞可由驾驶员通过制动踏板机构来操纵。

当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。

使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。

制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。

制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。

摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。

摩擦材料分金属和非金属两类。

前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。

制动器有摩擦式、液力式和电磁式等几种。

电磁式制动器虽有作用滞后小、易于连接且接头可靠等优点,但因成本高而只在一部分重型汽车上用来做车轮制动器或缓速器。

液力式制动器只用作缓速器。

目前广泛使用的仍为摩擦式制动器。

摩擦式制动器按摩擦副结构形式不同,分为鼓式、盘式和带式三种。

带式只用作中央制动器。

第2章鼓式制动器结构形式及选择

除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。

鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。

内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);

其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。

外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;

其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。

在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。

2.1鼓式制动器的形式结构

鼓式制动器可按其制动蹄的受力情况分类(见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。

图1.1鼓式制动器简图

(a)领从蹄式(用凸轮张开);

(b)领从蹄式(用制动轮缸张开);

(c)双领蹄式(非双向,平衡式);

(d)双向双领蹄式;

(e)单向增力式;

(f)双向増力式

制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。

制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;

反之,则称为从蹄。

2.2鼓式制动器按蹄的属性分类

2.2.1领从蹄式制动器

如图1.1(a),(b)所示,若图上的旋转箭头代表汽车前进时的制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。

汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调。

这种当制动鼓正,反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从蹄式制动器。

由图1.1(a),(b)可见,领蹄所受的摩擦力矩使蹄压得更紧,即摩擦力矩具有“增势”作用,故称为增势蹄;

而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。

“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。

图1.2PERROT公司的S凸轮制动器

图1.3俄KamA3汽车的S凸轮式车轮制动器

1制动蹄;

2凸轮;

3制动底板;

4调整臂;

5凸轮支座及制动气室;

6滚轮

对于两蹄的张开力的领从蹄式制动器结构,如图1.1(b)所示,两蹄压紧制动鼓的法向反力应相等。

但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓使其所受的法向反力加大;

从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减少。

这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。

这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。

液压或锲块驱动的领从蹄式制动器均为非平衡式结构,也叫简单非平衡式制动器。

非平衡式制动器对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。

为使衬片寿命均匀。

可将从蹄的摩擦衬片包角适当地减小。

对于如图1.1(a)所示具有定心凸轮张开装置的领从蹄制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法向反力和由此产生的制动力矩应分别相等,而作用于两蹄的张开力,则不等,并且必然有<

由于两蹄的法向反力在制动鼓正,反两个方向旋转并制动时均成立,因此这种结构的特性是双向的,实际上也是平衡式的。

其缺点是驱动凸轮的力要大而效率却相对较低,约为0.6~0.8。

因为凸轮要求气压驱动,因此这种结构仅使用于总质量大于或等于10t的货车和客车上。

领从蹄式制动器的两个蹄常有固定的支点。

张开装置有凸轮式(见图1.1(a),图1.2,图1.3),锲块式(图1.4),曲柄式(参见图1.10)和具有两个或四个等直径活塞的制动轮缸式的(见图1.1(b),图1.5,图1.6)。

后者可保证作用在两蹄上的张开力相等并用液压驱动,而凸轮式,锲块式和曲柄式等张开装置则用气压驱动。

当张开装置中的制动凸轮和制动锲块都是浮动的时,也能保证两蹄张开力相等,这时的凸轮称为平衡凸轮。

也有非平衡式的制动凸轮,其中心是固定的,不能浮动,所以不能保证作用在两蹄上的张开力相等。

图1.4锲块式张开装置的车轮制动器

1制动蹄;

2制动底座;

3制动气室;

4锲块;

5滚轮;

6柱塞;

7当块;

8棘爪;

9调整螺钉;

10调整套筒

图1.5制动轮缸具有两个等直径活塞的车轮制动器图1.6制动轮缸有四个直径活塞的车轮制动器

1活塞;

2活塞支承圈;

3密封圈;

4支承;

2制动底板;

3制动器间隙调5制动底板;

6制动蹄;

7支承销;

凸轮;

4偏心支承销9制动蹄定位销;

10驻车制动传动装置

领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中,重型载货汽车前,后轮以及轿车后轮制动器。

根据支承结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的结构方案,如图1.7所示

图1.7领从蹄式制动器的结构方案(液压驱动)

(a)一般形式;

(b)单固定支点;

轮缸上调整(c)双固定支点;

偏心轴调整;

(d)浮动蹄片;

支点端调整

2.2.2双领蹄式制动器

当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。

但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向为单向双领蹄式制动器。

如图1.1(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄,制动轮缸等机件在制动底板上是以制动底板中心为对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。

单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图9所示。

图1.8单向双领蹄式制动器的结构方案(液压驱动)

(b)偏心调整;

(c)轮缸上调整;

(d)浮式蹄片,轮缸支座调整端;

(e)浮动蹄片,轮缸偏心机构调整

双领蹄式制动器有高的正向制动效能,但倒车时变为双从蹄式,使制动效能大减。

中级轿车的前制动器常用这种形式,这是由于这类汽车前进制动时,前轴的轴荷及附着力大于后轴,而倒车时则相反,采用这这种结构作为前轮制动器并与领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前,后制动力分配()并使前,后轮制动器的许多

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1