《高分子化学》 习题与答案浙江大学第4版潘祖仁Word文档下载推荐.docx
《《高分子化学》 习题与答案浙江大学第4版潘祖仁Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《《高分子化学》 习题与答案浙江大学第4版潘祖仁Word文档下载推荐.docx(58页珍藏版)》请在冰豆网上搜索。
(3)CH2=C
COOCH3
(4)HO-(CH2)5-COOH
(5)CH2CH2CH2O
|__________|
7.写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?
(1)-[-CH2-CH-]n-
(2)-[-CH2-CH-]n-
OCOCH3
(3)-[-CH2-C=CH-CH2-]n-
(4)-[-NH(CH2)6NHCO(CH2)4CO-]n-
(5)-[-NH(CH2)5CO-]n-
8.写出合成下列聚合物的单体和反应式:
(1)聚苯乙烯
(2)聚丙烯
(3)聚四氟乙烯
(4)丁苯橡胶
(5)顺丁橡胶
(6)聚丙烯腈
(7)涤纶
(8)尼龙6,10
(9)聚碳酸酯
(10)聚氨酯
9.写出下列单体形成聚合物的反应式。
指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。
10.写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。
根据计算结果分析做塑料、纤维和橡胶用的聚合物在相对分子质量和聚合度上的差别。
11.如何用实验测定一未知单体的聚合反应是以逐步聚合还是以连锁聚合机理进行的。
12.阅读自学内容,写出自己对高分子科学的认识。
第一章
绪论习题答案
1.
(1)单体:
能够形成聚合物中结构单元的小分子化合物。
高分子:
由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。
由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。
(2)碳链聚合物:
聚合物主链完全由碳原子构成的聚合物。
杂链聚合物:
主链除碳外还含有氧、氮、硫等杂原子的聚合物。
元素有机聚合物:
主链不含碳,而侧基由有机基团组成的聚合物。
无机高分子;
主链和侧基均无碳原子的高分子。
(3)主链:
贯穿于整个高分子的链称为主链。
侧链:
主链两侧的链称为侧链。
侧基:
主链两侧的基团称为侧基。
端基:
主链两端的基团称为端基。
(4)结构单元:
高分子中多次重复的且可以表明合成所用单体种类的化学结构。
重复单元:
聚合物中化学组成相同的最小单位,又称为链节。
单体单元:
聚合物中具有与单体相同化学组成而不同电子结构的单元。
(5)聚合度:
高分子链中重复单元的数目称为聚合度。
相对分子质量:
重复单元的相对分子质量与聚合度的乘积即为高分子的相对分子质量。
对于高分子来说,通过聚合反应获得每一大分子相对分子质量都相同的聚合物几乎是不可能的,这种聚合物相对分子质量的多分散性又称为聚合物相对分子质量分布,可用重均相对分子质量与数均相对分子质量的比值表示其分布宽度。
(6)加聚反应:
单体通过相互加成而形成聚合物的反应。
缩聚反应:
带有多个可相互反应的官能团的单体通过有机化学中各种缩合反应消去某些小分子而形成聚合物的反应。
连锁聚合:
在链引发形成的活性中心的作用下,通过链增长、链终止、链转移等基元反应在极短时间内形成高分子的反应。
逐步聚合:
通过单体上所带的能相互反应的官能团逐步反应形成二聚体、三聚体、四聚体等,直到最终在数小时内形成聚合物的反应。
(7)加聚物:
通过加成聚合获得的聚合物,其重复单元与单体分子式结构相同、仅电子结构不同,同时聚合物相对分子质量是单体相对分子质量的整数倍。
缩聚物:
通过缩聚反应得到的聚合物。
低聚物:
相对分子质量在102-104的分子。
2.
从转化率和时间的关系看:
连锁聚合,单体转化率随时间延长而逐渐增加;
逐步聚合,反应初期单体消耗大部分,随后单体转化率随时间延长增加缓慢。
从相对分子质量与转化率关系看:
连锁聚合,在任何时刻均生成高分子量的聚合物;
逐步聚合,反应初期只生成低聚物,随转化率增加,聚合物相对分子质量逐渐增加,高分子量的聚合物需数十小时才能生成。
3.绝大多数烯类单体的加聚反应属于连锁聚合,如聚甲基丙烯酸甲酯的合成、聚苯乙烯的合成,都属于加聚和连锁聚合。
但反过来,并不是所有的连锁聚合都是加聚反应,如3-甲基-1-丁烯的聚合,反应是连锁聚合,但由于发生氢转移,其最终产物不是加聚物,不属于加聚反应。
绝大多数缩聚反应属于逐步聚合反应。
如尼龙-6,6的合成,反过来,不是所有逐步聚合都属缩聚反应,如聚氨酯的合成,属逐步聚合,但产物却是加聚产物。
4.
(1)天然无机高分子:
石棉、金刚石、云母
天然有机高分子:
纤维素、土漆、天然橡胶
生物高分子:
蛋白质、核酸
聚乙烯、聚苯乙烯、聚丙烯
聚甲醛、聚酰胺、聚酯
(3)塑料:
PE、PP、PVC、PS
橡胶:
丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶
化学纤维:
尼龙、聚酯、腈纶、丙纶
功能高分子:
离子交换树脂、光敏高分子、高分子催化剂
5.
6.7.
8.
①
聚乙烯M0=28,DP=2143~10714。
②
聚氯乙烯M0=62.5,DP=800~2400。
③
尼龙-6,6M0=226,DP=53~80。
④
维尼纶M0=86,DP=698~872。
⑤
天然橡胶M0=68,DP=2941~5882。
⑥
顺丁橡胶M0=52,DP=4808~5769。
从相对分子质量和聚合度来比较,三者的关系为:
橡胶>塑料>纤维。
第二章逐步聚合习题
1、
解释下列概念
反应程度和转化率
当量系数和过量分数
平衡缩聚和不平衡缩聚
均缩聚、混缩聚和共缩聚
线形缩聚和体型缩聚
平均官能度和凝胶点
⑦
光能团和官能度
⑧
热塑性树脂和热固性树脂
⑨
结构预聚物和无规预聚物
2、
讨论下列缩聚反应环化的可能性。
m=2—10。
①
②
3、
写出并描述下列反应所形成的聚酯的结构,聚酯结构与反应物相对量有无关系。
如有关系,请说明差别。
4、
用碱滴定法和红外光谱法均测得21.3g聚己二酰己二胺试样中2.50×
10-3mol的羧基。
计算该聚合吴的数均相对分子质量为8520,计算时需做什么假定?
如何通过实验来确定其可靠性?
如该假定不可靠,如何由实验来测定正确的数均相对分子质量?
5、
等摩尔二元醇与二元酸在外加酸催化下进行缩聚,证明从P从0.98到0.99所需的时间与从开始到P=0.98所需的时间相近。
6、
等摩尔二元酸与二元胺缩聚,平衡常数为1000,在封闭体系中反应,问反应程度和聚合度能达到多少?
如果羧基起始浓度为4mol/L,要使聚合度达到200,需将[H2O]降低到怎样的程度?
7、
尼龙-1010是根据1010盐中过量的癸二酸控制相对分子质量的。
如果要求数均相对分子质量为2×
104,反应程度为0.995,问配料时的当量系数和过量分数各是多少?
8、
等摩尔二元醇和二元酸缩聚,另加1.5%(mol)醋酸调节相对分子质量。
P=0.995及0.999时,聚酯的聚合度各为多少?
加1%(mol)醋酸时,结果如何?
(醋酸%(mol)浓度以二元酸计)
9、
等摩尔的二元酸和二元胺缩聚时,画出P=0.95,0.99和0.995时的数均分子质量分布曲线和重均分子质量分布曲线,并计算数均聚合度和重均聚合度,比较二者的相对分子质量分布的宽度。
10、
计算下列混合物的凝胶点,各物质的比例为摩尔比
a、邻苯二甲酸酐:
甘油=3.0:
2.0
b、邻苯二甲酸酐:
甘油=1.50:
0.98
c、邻苯二甲酸酐:
甘油=4.0:
1.0
d、邻苯二甲酸酐:
甘油:
乙二醇=1.50:
0.99:
0.002
11、邻苯二甲酸酐与官能团等摩尔的季戊四醇缩聚,试求:
a.平均官能度
b.按Carothers法求凝胶点。
c.按统计法求凝胶点。
12、苯酚和甲醛采用酸和碱催化聚合,其原料配比、预聚体结构、固化方法等方面有哪些不同?
13、1000g环氧树脂(环氧值为0.2)用等当量的乙二胺或二次乙基三胺(H2NCH2CH2NHCH2CH2NH)固化,以过量10%计,试计算两种固化剂的用量。
14、合成下列无规和嵌段共聚物:
15、不饱和聚酯树脂的主要原料为乙二醇、马来酸酐和邻苯二甲酸酐,试说明三种原料各起什么作用,比例调整的原则。
用苯乙烯固化的原理是什么?
考虑室温固化使用何种引发体系?
第二章逐步聚合习题答案
a.
反应程度:
参加反应的官能团与起始官能团总数之比。
转化率:
参加反应的单体分子数与初始投料单体分子数之比。
b.
当量系数:
起始两种官能团数之比,记为γ,γ≦1。
过量分数:
过量单体的过量分子数与不过量单体的分子数之比。
c.
平衡缩聚:
通常指平衡常数小于103的缩聚反应。
不平衡缩聚:
通常指平衡常数大于103的缩聚反应,或根本不可逆的缩聚反应。
d.
均缩聚:
由一种单体进行的缩聚反应.
混缩聚;
由两种均不能独自缩聚的单体进行的缩聚为混缩聚.
共缩聚:
在均缩聚中加入第二种单体或在混缩聚中加入第三甚至第四种单体进行的缩聚反应。
e.
线型缩聚:
2官能度单体或2-2体系的单体进行缩聚反应,聚合过程中,分子链线形增长,最终获得线型聚合物的缩聚反应。
体型缩聚:
有官能度大于2的单体参与的缩聚反应,聚合过程中,先产生支链,再交联成体型结构,这类聚合过程称为体型缩聚。
f.
平均官能度:
反应体系中平均每一个分子带有的能参加反应的官能团数。
凝胶点:
开始出现凝胶时的临界反应程度。
g.
官能团:
单体分子中能参见反应并能表征反应类型的原子或原子团。
官能度;
一个分子上参加反应的官能团数。
h.
热塑性树脂加热时可塑化、冷却时则固化成型,能如此反复进行这种受热行为的树脂。
热固性树脂:
体型缩聚中形成的线型和支链型预聚物可熔融塑化,受热后经固化反应形成体型聚合物。
该聚合物加热后不能再塑化、成型,把这样的预聚物称为热固性树脂。
i.
无规预聚物:
结构不确定,未反应的官能团无规排布的预聚物。
结构预聚物:
具有特定的活性端基或侧基的预聚物。
a.
m=2时