4.布朗运动与伊藤公式PPT课件下载推荐.ppt

上传人:b****2 文档编号:15129782 上传时间:2022-10-27 格式:PPT 页数:53 大小:358KB
下载 相关 举报
4.布朗运动与伊藤公式PPT课件下载推荐.ppt_第1页
第1页 / 共53页
4.布朗运动与伊藤公式PPT课件下载推荐.ppt_第2页
第2页 / 共53页
4.布朗运动与伊藤公式PPT课件下载推荐.ppt_第3页
第3页 / 共53页
4.布朗运动与伊藤公式PPT课件下载推荐.ppt_第4页
第4页 / 共53页
4.布朗运动与伊藤公式PPT课件下载推荐.ppt_第5页
第5页 / 共53页
点击查看更多>>
下载资源
资源描述

4.布朗运动与伊藤公式PPT课件下载推荐.ppt

《4.布朗运动与伊藤公式PPT课件下载推荐.ppt》由会员分享,可在线阅读,更多相关《4.布朗运动与伊藤公式PPT课件下载推荐.ppt(53页珍藏版)》请在冰豆网上搜索。

4.布朗运动与伊藤公式PPT课件下载推荐.ppt

Chapter4BrownianMotion&@#@ItFormulaStochasticProcessnThepricemovementofanunderlyingassetisastochasticprocess.nTheFrenchmathematicianLouisBachelierwasthefirstonetodescribethestocksharepricemovementasaBrownianmotioninhis1900doctoralthesis.nintroductiontotheBrownianmotionnderivethecontinuousmodelofoptionpricingngivingthedefinitionandrelevantpropertiesBrownianmotionnderivestochasticcalculusbasedontheBrownianmotionincludingtheItointegral&@#@Itoformula.nAllofthedescriptionanddiscussionemphasizeclarityratherthanmathematicalrigor.Coin-tossingProblemnDefinearandomvariablenItiseasytoshowthatithasthefollowingproperties:

@#@n&@#@areindependentRandomVariablenWiththerandomvariable,definearandomvariableandarandomsequencenRandomWalknConsideratimeperiod0,T,whichcanbedividedintoNequalintervals.Let=TN,t_n=n,(n=0,1,cdots,N),thennArandomwalkisdefinedin0,T:

@#@niscalledthepathoftherandomwalk.DistributionofthePathnLetT=1,N=4,=1/4,FormofPathnthepathformedbylinearinterpolationbetweentheaboverandompoints.For=1/4case,thereare24=16paths.tS1PropertiesofthePathCentralLimitTheoremnForanyrandomsequencewheretherandomvariableXN(0,1),i.e.therandomvariableXobeysthestandardnormaldistribution:

@#@E(X)=0,Var(X)=1.ApplicationofCentralLimitThem.nConsiderlimitas0.DefinitionofWinnerProcess(BrownianMotion)n1)Continuityofpath:

@#@W(0)=0,W(t)isacontinuousfunctionoft.n2)Normalincrements:

@#@Foranyt0,W(t)N(0,t),andfor0s0(0)denotingthenumberofsharesbought(sold)attimet.Forachoseninvestmentstrategy,whatisthetotalprofitatt=T?

@#@AnExamplecont.nPartition0,Tby:

@#@nIfthetransactionsareexecutedattimeonly,thentheinvestmentstrategycanonlybeadjustedontradingdays,andthegain(loss)atthetimeintervalisnThereforethetotalprofitin0,TisDefinitionofItIntegralnIff(t)isanon-anticipatingstochasticprocess,suchthatthelimitexists,andisindependentofthepartition,thenthelimitiscalledtheItIntegraloff(t),denotedasRemarkofItIntegralnDef.oftheItoIntegraloneoftheRiemannintegral.n-theRiemannsumunderaparticularpartition.nHowever,f(t)-non-anticipating,nHenceinthevalueoffmustbetakenattheleftendpointoftheinterval,notatanarbitrarypointin.nBasedonthequadraticvarianceThem.4.1thatthevalueofthelimitoftheRiemannsumofaWienerprocessdependsonthechoiceoftheinterpoints.nSo,foraWienerprocess,iftheRiemannsumiscalculatedoverarbitrarilypointin,theRiemannsumhasnolimit.RemarkofItIntegral2nIntheaboveproofprocess:

@#@sincethequadraticvariationofaBrownianmotionisnonzero,theresultofanItointegralisnotthesameastheresultofanormalintegral.ItoDifferentialFormulannThisindicatesacorrespondingchangeinthedifferentiationruleforthecompositefunction.ItFormulanLet,whereisastochasticprocess.WewanttoknownThisistheItoformulatobediscussedinthissection.TheItoformulaistheChainRuleinstochasticcalculus.CompositeFunctionofaStochasticProcessnThedifferentialofafunctionisthelinearprincipalpartofitsincrement.DuetothequadraticvariationtheoremoftheBrownianmotion,acompositefunctionofastochasticprocesswillhavenewcomponentsinitslinearprincipalpart.Letusbeginwithafewexamples.ExpansionnBytheTaylorexpansion,nThenneglectingthehigherorderterms,Examplen1DifferentialofRiskyAssetnInarisk-neutralworld,thepricemovementofariskyassetcanbeexpressedby,nWewanttofinddS(t)=?

@#@DifferentialofRiskyAssetcont.nStochasticDifferentialEquationnInarisk-neutralworld,theunderlyingassetsatisfiesthestochasticdifferentialequationwhereisthereturnofoveratimeintervaldt,rdtistheexpectedgrowthofthereturnof,andisthestochasticcomponentofthereturn,withvariance.iscalledvolatility.Theorem4.2(ItoFormula)nVisdifferentiablebothvariables.IfsatisfiesSDEthenProofofTheorem4.2nBytheTaylorexpansionnButProofofTheorem4.2cont.nSubstitutingitintoori.Equ.,wegetnnThusItoformulaistrue.Theorem4.3nIfarestochasticprocessessatisfyingrespectivelythefollowingSDEnthenProofofTheorem4.3nnBytheItoformula,ProofofTheorem4.3cont.nSubstitutingthemintoaboveformulanThustheTheorem4.3isproved.Theorem4.4nIfarestochasticprocessessatisfyingtheaboveSDE,thennProofofTheorem4.4nByItoformulanProofofTheorem4.4cont.nThusbyTheorem4.3,wehavennTheoremisproved.RemarknTheorems4.3-4.4tellus:

@#@nDuetothechangeintheChainRulefordifferentiatingcompositefunctionoftheWienerprocess,theproductruleandquotientrulefordifferentiatingfunctionsoftheWienerprocessarealsochanged.nAlltheseresultsremindusthatstochasticcalculusoperationsaredifferentfromthenormalcalculusoperations!

@#@MultidimensionalItformul

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 预防医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1