4.布朗运动与伊藤公式PPT课件下载推荐.ppt
《4.布朗运动与伊藤公式PPT课件下载推荐.ppt》由会员分享,可在线阅读,更多相关《4.布朗运动与伊藤公式PPT课件下载推荐.ppt(53页珍藏版)》请在冰豆网上搜索。
Chapter4BrownianMotion&@#@ItFormulaStochasticProcessnThepricemovementofanunderlyingassetisastochasticprocess.nTheFrenchmathematicianLouisBachelierwasthefirstonetodescribethestocksharepricemovementasaBrownianmotioninhis1900doctoralthesis.nintroductiontotheBrownianmotionnderivethecontinuousmodelofoptionpricingngivingthedefinitionandrelevantpropertiesBrownianmotionnderivestochasticcalculusbasedontheBrownianmotionincludingtheItointegral&@#@Itoformula.nAllofthedescriptionanddiscussionemphasizeclarityratherthanmathematicalrigor.Coin-tossingProblemnDefinearandomvariablenItiseasytoshowthatithasthefollowingproperties:
@#@n&@#@areindependentRandomVariablenWiththerandomvariable,definearandomvariableandarandomsequencenRandomWalknConsideratimeperiod0,T,whichcanbedividedintoNequalintervals.Let=TN,t_n=n,(n=0,1,cdots,N),thennArandomwalkisdefinedin0,T:
@#@niscalledthepathoftherandomwalk.DistributionofthePathnLetT=1,N=4,=1/4,FormofPathnthepathformedbylinearinterpolationbetweentheaboverandompoints.For=1/4case,thereare24=16paths.tS1PropertiesofthePathCentralLimitTheoremnForanyrandomsequencewheretherandomvariableXN(0,1),i.e.therandomvariableXobeysthestandardnormaldistribution:
@#@E(X)=0,Var(X)=1.ApplicationofCentralLimitThem.nConsiderlimitas0.DefinitionofWinnerProcess(BrownianMotion)n1)Continuityofpath:
@#@W(0)=0,W(t)isacontinuousfunctionoft.n2)Normalincrements:
@#@Foranyt0,W(t)N(0,t),andfor0s0(0)denotingthenumberofsharesbought(sold)attimet.Forachoseninvestmentstrategy,whatisthetotalprofitatt=T?
@#@AnExamplecont.nPartition0,Tby:
@#@nIfthetransactionsareexecutedattimeonly,thentheinvestmentstrategycanonlybeadjustedontradingdays,andthegain(loss)atthetimeintervalisnThereforethetotalprofitin0,TisDefinitionofItIntegralnIff(t)isanon-anticipatingstochasticprocess,suchthatthelimitexists,andisindependentofthepartition,thenthelimitiscalledtheItIntegraloff(t),denotedasRemarkofItIntegralnDef.oftheItoIntegraloneoftheRiemannintegral.n-theRiemannsumunderaparticularpartition.nHowever,f(t)-non-anticipating,nHenceinthevalueoffmustbetakenattheleftendpointoftheinterval,notatanarbitrarypointin.nBasedonthequadraticvarianceThem.4.1thatthevalueofthelimitoftheRiemannsumofaWienerprocessdependsonthechoiceoftheinterpoints.nSo,foraWienerprocess,iftheRiemannsumiscalculatedoverarbitrarilypointin,theRiemannsumhasnolimit.RemarkofItIntegral2nIntheaboveproofprocess:
@#@sincethequadraticvariationofaBrownianmotionisnonzero,theresultofanItointegralisnotthesameastheresultofanormalintegral.ItoDifferentialFormulannThisindicatesacorrespondingchangeinthedifferentiationruleforthecompositefunction.ItFormulanLet,whereisastochasticprocess.WewanttoknownThisistheItoformulatobediscussedinthissection.TheItoformulaistheChainRuleinstochasticcalculus.CompositeFunctionofaStochasticProcessnThedifferentialofafunctionisthelinearprincipalpartofitsincrement.DuetothequadraticvariationtheoremoftheBrownianmotion,acompositefunctionofastochasticprocesswillhavenewcomponentsinitslinearprincipalpart.Letusbeginwithafewexamples.ExpansionnBytheTaylorexpansion,nThenneglectingthehigherorderterms,Examplen1DifferentialofRiskyAssetnInarisk-neutralworld,thepricemovementofariskyassetcanbeexpressedby,nWewanttofinddS(t)=?
@#@DifferentialofRiskyAssetcont.nStochasticDifferentialEquationnInarisk-neutralworld,theunderlyingassetsatisfiesthestochasticdifferentialequationwhereisthereturnofoveratimeintervaldt,rdtistheexpectedgrowthofthereturnof,andisthestochasticcomponentofthereturn,withvariance.iscalledvolatility.Theorem4.2(ItoFormula)nVisdifferentiablebothvariables.IfsatisfiesSDEthenProofofTheorem4.2nBytheTaylorexpansionnButProofofTheorem4.2cont.nSubstitutingitintoori.Equ.,wegetnnThusItoformulaistrue.Theorem4.3nIfarestochasticprocessessatisfyingrespectivelythefollowingSDEnthenProofofTheorem4.3nnBytheItoformula,ProofofTheorem4.3cont.nSubstitutingthemintoaboveformulanThustheTheorem4.3isproved.Theorem4.4nIfarestochasticprocessessatisfyingtheaboveSDE,thennProofofTheorem4.4nByItoformulanProofofTheorem4.4cont.nThusbyTheorem4.3,wehavennTheoremisproved.RemarknTheorems4.3-4.4tellus:
@#@nDuetothechangeintheChainRulefordifferentiatingcompositefunctionoftheWienerprocess,theproductruleandquotientrulefordifferentiatingfunctionsoftheWienerprocessarealsochanged.nAlltheseresultsremindusthatstochasticcalculusoperationsaredifferentfromthenormalcalculusoperations!
@#@MultidimensionalItformul