成才之路高中数学人教A版选修23练习综合检测2含答案解析文档格式.docx
《成才之路高中数学人教A版选修23练习综合检测2含答案解析文档格式.docx》由会员分享,可在线阅读,更多相关《成才之路高中数学人教A版选修23练习综合检测2含答案解析文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
m
2m
[答案] B
[解析] 由m+2m=1得,m=,∴E(X)=0×
+1×
=,D(X)=(0-)2×
+(1-)2×
=,故选B.
4.(2016·
天水高二检测)设随机变量X服从正态分布N(3,4),则P(X<
1-3a)=P(X>
a2+7)成立的一个必要不充分条件是( )
A.a=1或2B.a=±
1或2
C.a=2D.a=
[解析] ∵X~N(3,4),P(X<
a2+7),
∴(1-3a)+(a2+7)=2×
3,∴a=1或2.故选B.
5.如果随机变量ξ~B(n,p),且E(ξ)=7,D(ξ)=6,则p等于( )
[解析] 如果随机变量ξ~B(n,p),则Eξ=np,Dξ=np(1-p),
又E(ξ)=7,D(ξ)=6,∴np=7,np(1-p)=6,∴p=.
6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为( )
A.恰有1只是坏的B.4只全是好的
C.恰有2只是好的D.至多有2只是坏的
[答案] C
[解析] X=k表示取出的螺丝钉恰有k只为好的,则P(X=k)=(k=1、2、3、4).
∴P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,∴选C.
7.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入A袋中的概率为( )
[解析] 小球落入B袋中的概率为P1=(×
×
)×
2=,∴小球落入A袋中的概率为P=1-P1=.
8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1)与D(2ξ+1)的值分别为( )
A.13,4B.13,8
C.7,8D.7,16
[解析] 由已知E(ξ)=3,D(ξ)=4,得E(2ξ+1)=2E(ξ)+1=7,D(2ξ+1)=4D(ξ)=16.
9.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是( )
A.7.8B.8
C.16D.15.6
[解析] X的取值为6、9、12,P(X=6)==,
P(X=9)==,P(X=12)==.
E(X)=6×
+9×
+12×
=7.8.
10.设随机变量ξ服从分布P(ξ=k)=,(k=1、2、3、4、5),E(3ξ-1)=m,E(ξ2)=n,则m-n=( )
A.-B.7
C.D.-5
[解析] E(ξ)=1×
+2×
+3×
+4×
+5×
=,∴E(3ξ-1)=3E(ξ)-1=10,
又E(ξ2)=12×
+22×
+32×
+42×
+52×
=15,∴m-n=-5.
11.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a,平局的概率为b,负的概率为c(a、b、c∈[0,1)),已知他比赛一局得分的数学期望为1,则ab的最大值为( )
[解析] 由条件知,3a+b=1,∴ab=(3a)·
b≤·
2=,等号在3a=b=,即a=,b=时成立.
12.一个盒子里装有6张卡片,上面分别写着如下6个定义域为R的函数:
f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.现从盒子中逐一抽取卡片,且每次取出后不放回,若取到一张记有偶函数的卡片,则停止抽取,否则继续进行,则抽取次数ξ的数学期望为( )
[解析] 由于f2(x),f5(x),f6(x)为偶函数,f1(x),f3(x),f4(x)为奇函数,所以随机变量ξ可取1,2,3,4.
P(ξ=1)==,
P(ξ=2)==,
P(ξ=3)==,
P(ξ=4)==.
所以ξ的分布列为
ξ
2
3
4
E(ξ)=1×
=.
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.(2016·
泉州高二检测)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.若η=aξ-2,E(η)=1,则D(η)的值为________.
[答案] 11
[解析] 根据题意得出随机变量ξ的分布列:
E(ξ)=0×
=,
∵η=aξ-2,E(η)=1,
∴1=a×
-2,即a=2,
∴η=2ξ-2,E(η)=1,
D(ξ)=×
(0-)2+×
(1-)2+×
(2-)2+×
(3-)2+×
(4-)2=,
∵D(η)=4D(ξ)=4×
=11.
故答案为11.
14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A为“第一次取到的是一等品”,事件B为“第二次取到的是一等品”,则P(B|A)=________.
[答案]
[解析] 由条件知,P(A)=,P(AB)==,
∴P(B|A)==.
15.在一次商业活动中,某人获利300元的概率为0.6,亏损100元的概率为0.4,此人在这样的一次商业活动中获利的均值是________元.
[答案] 140
[解析] 设此人获利为随机变量X,则X的取值是300,-100,其概率分布列为:
300
-100
0.6
0.4
所以E(X)=300×
0.6+(-100)×
0.4=140.
16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1、A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;
再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是______(写出所有正确结论的序号).
①P(B)=;
②P(B|A1)=;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.
[答案] ②④
[解析] 从甲罐中取出一球放入乙罐,则A1、A2、A3中任意两个事件不可能同时发生,即A1、A2、A3两两互斥,故④正确,易知P(A1)=,P(A2)=,P(A3)=,又P(B|A1)=,P(B|A2)=,P(B|A3)=,故②对③错;
∴P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)·
P(B|A1)+P(A2)P(B|A2)+P(A3)·
P(B|A3)=×
+×
=,故①⑤错误.综上知,正确结论的序号为②④.
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本题满分10分)甲、乙、丙、丁4名同学被随机地分到A、B、C三个社区参加社会实践,要求每个社区至少有一名同学.
(1)求甲、乙两人都被分到A社区的概率;
(2)求甲、乙两人不在同一个社区的概率;
(3)设随机变量ξ为四名同学中到A社区的人数,求ξ的分布列和E(ξ)的值.
[解析]
(1)记甲、乙两人同时到A社区为事件M,那么P(M)==,
即甲、乙两人同时分到A社区的概率是.
(2)记甲、乙两人在同一社区为事件E,那么
P(E)==,
所以,甲、乙两人不在同一社区的概率是
P()=1-P(E)=.
(3)随机变量ξ可能取的值为1,2.事件“ξ=i(i=1,2)”是指有i个同学到A社区,
则p(ξ=2)==.
所以p(ξ=1)=1-p(ξ=2)=,
ξ的分布列是:
p
∴E(ξ)=1×
18.(本题满分12分)(2015·
重庆理,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.
[解析]
(1)令A表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有
P(A)==.
(2)X的可能取值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==
综上知,X的分布列为:
故E(X)=0×
=(个).
19.(本题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P甲、P乙;
工序
概率
产品
第一工序
第二工序
甲
0.8
0.85
乙
0.75
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在
(1)的条件下,求ξ、η的分布列及E(ξ),E(η);
等级
利润
一等
二等
5(万元)
2.5(万元)
1.5(万元)
(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在
(2)的条件下,x、y为何值时,z=xE(ξ)+yE(η)最大?
最大值是多少?
项目
产品
工人(名)
资金(万元)
8
5
10
[解析]
(1)P甲=0.8×
0.85=0.68,
P乙=0.75×
0.8=0.6.
(2)随机变量ξ、η的分布列是
2.5
0.68
0.32
η
1.5
E(ξ)=5×
0.68+2.5×
0.32=4.2,
E(η)=2.5×
0.6+1.5×
0.4=2.1.
(3)由题设知
即目标函数为z=xE(ξ)+yE(η)=4.2x+2.1y.
作出可行域(如图):
作直线l:
4.2x+2.1y=0,
将l向右上方平移至l1位置时,直线经过可行域上的点M,此时z=4.2x+2.1y取最大值.
解方程组