最新化学新型绿色催化剂分子筛催化剂文档格式.docx

上传人:b****3 文档编号:14608575 上传时间:2022-10-23 格式:DOCX 页数:9 大小:26.02KB
下载 相关 举报
最新化学新型绿色催化剂分子筛催化剂文档格式.docx_第1页
第1页 / 共9页
最新化学新型绿色催化剂分子筛催化剂文档格式.docx_第2页
第2页 / 共9页
最新化学新型绿色催化剂分子筛催化剂文档格式.docx_第3页
第3页 / 共9页
最新化学新型绿色催化剂分子筛催化剂文档格式.docx_第4页
第4页 / 共9页
最新化学新型绿色催化剂分子筛催化剂文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

最新化学新型绿色催化剂分子筛催化剂文档格式.docx

《最新化学新型绿色催化剂分子筛催化剂文档格式.docx》由会员分享,可在线阅读,更多相关《最新化学新型绿色催化剂分子筛催化剂文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

最新化学新型绿色催化剂分子筛催化剂文档格式.docx

分子筛,是具有均一微孔结构而能将不同大小分子分离或选择性反应的固体吸附剂或催化剂。

是一种结晶型的硅铝酸盐,有天然和合成两种,其组成SiO2与Al2O3之比不同,商品有不同的型号。

,具有均匀的孔隙结构。

分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。

自然界存在的常称沸石,人工合成的称为分子筛。

它们的化学组成可表示为Mx/n[(AlO2)x·(SiO2)y]·ZH2O

式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。

当金属离子的化合价n=1时,M的原子数等于Al的原子数;

若n=2,M的原子数为Al原子数的一半。

常用的分子筛主要有:

方钠型沸石,如A型分子筛;

八面型沸石,如X-型,Y-型分子筛;

丝光型沸石(-M型);

高硅型沸石,如ZSM-5等。

分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。

近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。

分子筛催化剂,又称沸石分子筛催化剂,系指以分子筛为催化剂活性组分或主要活性组分之一的催化剂。

分子筛具有离子交换性能、均一的分子大小的孔道、酸催化活性,并有良好的热稳定性和水热稳定性,可制成对许多反应有高活性、高选择性的催化剂[1]。

3.分子筛特点

  分子筛吸湿能力极强,用于气体的纯化处理,保存时应避免直接暴露在空气中。

存放时间较长并已经吸湿的分子筛使用前应进行再生。

分子筛忌油和液态水。

使用时应尽量避免与油及液态水接触。

工业生产中干燥处理的气体有,空气,氢气,氧气,氮气,氩气等.用两只吸附干燥器并联,一只工作,同时另一只可以进行再生处理。

相互交替工作和再生,以保证设备连续运行。

干燥器在8-12℃下工作,在加温至350℃下冲气再生。

不同规格的分子筛再生温度略有不同。

分子筛对某些有机气相反应具有良好的催化作用。

  又称泡沸石或沸石,是一种结晶型的铝硅酸盐,其晶体结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分。

故称分子筛。

早在200多年前,B.克龙施泰特第一个把铝硅酸盐命名为泡沸石,化学组成通式为式中M与n是金属离子及其价数;

x是二氧化硅的分子数;

y是水的分子数;

p是铝的原子数;

q是硅的原子数。

分子筛在化学工业中作为固体吸附剂,被其吸附的物质可以解吸,分子筛用后可以再生。

还用于气体和液体的干燥、纯化、分离和回收。

20世纪60年代开始,在石油炼制工业中用作裂化催化剂,现在已开发多种适用于不同催化过程的分子筛催化剂。

而分子筛催化剂引起化学工作者的研究热情的原因之一,在于和老式催化剂(如AlCl3催化剂)相比,分子筛催化剂本身无毒、无害,反应产物容易分离,选择性好,催化活性高,而且大大提高生产效率,降低设备投资成本,降低原材料消耗,从而提高产量和质量,而且废催化剂对环境是友好的,不会产生污染。

总而言之,分子筛催化剂是一种“绿色催化剂”。

表1给出异丙苯生产的AlCl3催化工艺与分子筛催化工艺的“三废”排放情况。

表1三氯化铝和分子筛催化剂工艺生产异丙苯“三废”排放对照

“三废”排放量和产量

AlCl3工艺

分子筛工艺

异丙苯产量(104t/a)

6.7

8.5

污水量(t/h)

9.6

稀盐酸(kg/h)

9.0

废气(kg/h)

211

4

废渣(kg/h)

126[Al(OH)3]

4.6(废催化剂)

4.分子筛的结构特征

(1)四个方面、三种层次:

分子筛的结构特征可以分为四个方面、三种不同的结构层次。

第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。

相邻的四面体由氧桥连结成环。

环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。

环是分子筛的通道孔口,对通过分子起着筛分作用。

氧环通过氧桥相互联结,形成具有三维空间的多面体。

各种各样的多面体是分子筛结构的第三个层次。

多面体有中空的笼,笼是分子筛结构的重要特征。

笼分为α笼,八面沸石笼,β笼和γ笼等。

(2)分子筛的笼:

α笼:

是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。

笼的平均孔径为1.14nm,空腔体积为760[Å

]3。

α笼的最大窗孔为八元环,孔径0.41nm。

八面沸石笼:

是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为850[Å

最大孔窗为十二元环,孔径0.74nm。

八面沸石笼也称超笼。

β笼:

主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为160[Å

]3,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。

此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。

不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。

(3)几种具有代表性的分子筛

A型分子筛

类似于NaCl的立方晶系结构。

若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。

8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。

中心有一个大的α的笼。

α笼之间通道有一个八元环窗口,其直径为4Å

,故称4A分子筛。

若4A分子筛上70%的Na+为Ca2+交换,八元环可增至5Å

,对应的沸石称5A分子筛。

反之,若70%的Na+为K+交换,八元环孔径缩小到3Å

,对应的沸石称3A分子筛。

X-型和Y-型分子筛

类似金刚石的密堆六方晶系结构。

若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居中心,其余4个β笼位于正四面体顶点,就形成了八面体沸石型的晶体结构。

用这种结构继续连结下去,就得到X-型和Y型分子筛结构。

在这种结构中,由β笼和六方柱笼形成的大笼为八面沸石笼,它们相通的窗孔为十二元环,其平均有效孔径为0.74nm,这就是X-型和Y-型分子筛的孔径。

这两种型号彼此间的差异主要是Si/Al比不同,X-型为1~1.5;

Y型为1.5~3.0。

丝光沸石型分子筛

这种沸石的结构,没有笼而是层状结构。

结构中含有大量的五元环,且成对地联系在一起,每对五元环通过氧桥再与另一对联结。

联结处形成四元环。

这种结构单元进一步联结形成层状结构。

层中有八元环和十二元环,后者呈椭圆形,平均直径0.74nm,是丝光沸石的主孔道。

这种孔道是一维的,即直通道。

高硅沸石ZSM(ZeoliteSoconyMobil)型分子筛

这种沸石有一个系列,广泛应用的为ZSM-5,与之结构相同的有ZSM-8和ZSM-11;

另一组为ZSM-21、ZSM-35和ZSM-38等。

ZSM-5常称为高硅型沸石,其Si/Al比可高达50以上,ZSM-8可高达100,这组分子筛还显出憎水的特性。

它们的结构单元与丝光沸石相似,由成对的五元环组成,无笼状空腔,只有通道。

ZSM-5有两组交叉的通道,一种为直通的,另一种为之字型相互垂直,都由十元环形成。

通道呈椭圆形,其窗口直径为(0.55-0.60)nm。

属于高硅族的沸石还有全硅型的Silicalite-1,结构与ZSM-5一样,Silicalite-2与ZSM-11一样。

磷酸铝系分子筛

该系沸石是继60年代Y-型分子筛,70年代ZSM-5型高硅分子筛之后,于80年代出现的第三代新型分子筛。

包括大孔的AlPO-5(0.1-0.8nm),中孔的AlPO-11(0.6nm)和小孔的AlPO-34(0.4nm)等结构及MAPO-n系列和AlPO径经Si化学改性成的SAPO系列等。

5.分子筛催化剂的催化作用机理

分子筛具有明确的孔腔分布,极高的内表面积(600m2/s)良好的热稳定性(1000℃),可调变的酸位中心。

分子筛酸性主要来源于骨架上和孔隙中的三配位的铝原子和铝离子(AlO)+。

经离子交换得到的分子筛HY上的OH基显酸位中心,骨架外的铝离子会强化酸位,形成L酸位中心。

像Ca2+、Mg2+、La3+等多价阳离子经交换后可以显示酸位中心。

Cu2+、Ag+等过渡金属离子还原也能形成酸位中心。

一般来说Al/Si比越高,OH基的比活性越高。

分子筛酸性的调变可通过稀盐酸直接交换将质子引入。

由于这种办法常导致分子筛骨架脱铝。

所以NaY要变成NH4Y,然后再变为HY。

5.1分子筛具择形催化的性质

因为分子筛结构中有均匀的小内孔,当反应物和产物的分子线度与晶内的孔径相接近时,催化反应的选择性常取决于分子与孔径的相应大小。

这种选择性称之为择形催化。

导致择形选择性的机理有两种,一种是由孔腔中参与反应的分子的扩散系数差别引起的,称为质量传递选择性;

另一种是由催化反应过渡态空间限制引起的,称为过渡态选择性。

择形催化有4种形式:

5.1.1反应物择形催化

当反应混合物中某些能反应的分子因太大而不能扩散进入催化剂孔腔内,只有那些直径小于内孔径的分子才能进入内孔,在催化活性部分进行反应。

5.1.2产物的择形催化

当产物混合物中某些分子太大,难于从分子筛催化剂的内孔窗口扩散出来,就形成了产物的择形选择性。

5.1.3过渡态限制的选择性

有些反应,其反应物分子和产物分子都不受催化剂窗口孔径扩散的限制,只是由于需要内孔或笼腔有较大的空间,才能形成相应的过渡态,不然就受到限制使该反应无法进行;

相反,有些反应只需要较小空间的过渡态就不受这种限制,这就构成了限制过渡态的择形催化。

ZSM-5常用于这种过渡态选择性的催化反应,最大优点是阻止结焦。

因为ZSM-5较其他分子筛具有较小的内孔,不利于焦生成的前驱物聚合反应需要的大的过渡态形成。

因而比别的分子筛和无定形催化剂具有更长的寿命。

5.1.4分子交通控制的择形催化

在具有两种不同形状和大小和孔道分子筛中,反应物分子可以很容易地通过一种孔道进入到催化剂的活性部位,进行催化反应,而产物分子则从另一孔道扩散出去,尽可能地减少逆扩散,从面增加反应速率。

这种分子交通控制的催化反应,是一种特殊形式的择形选择性,称分子交通控制择形催化。

5.2择形选择性的调变

可以通过毒化外表面活性中心;

修饰窗孔入口的大小,常用的修饰剂为四乙基原硅酸酯;

也可改变晶粒大小等。

择形催化最大的实用价值,在于利用它表征孔结构的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1