PWM控制原理文档格式.docx

上传人:b****3 文档编号:14350986 上传时间:2022-10-22 格式:DOCX 页数:29 大小:318.88KB
下载 相关 举报
PWM控制原理文档格式.docx_第1页
第1页 / 共29页
PWM控制原理文档格式.docx_第2页
第2页 / 共29页
PWM控制原理文档格式.docx_第3页
第3页 / 共29页
PWM控制原理文档格式.docx_第4页
第4页 / 共29页
PWM控制原理文档格式.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

PWM控制原理文档格式.docx

《PWM控制原理文档格式.docx》由会员分享,可在线阅读,更多相关《PWM控制原理文档格式.docx(29页珍藏版)》请在冰豆网上搜索。

PWM控制原理文档格式.docx

理论基础:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图6-1形状不同而冲量相同的各种窄脉冲

面积等效原理:

分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;

用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图6-3用PWM波代替正弦半波

要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

等幅PWM波和不等幅PWM波:

由直流电源产生的PWM波通常是等幅PWM波,如直流斩波电路及本章主要介绍的PWM逆变电路,6.4节的PWM整流电路。

输入电源是交流,得到不等幅PWM波,如4.1节讲述的斩控式交流调压电路,4.4节的矩阵式变频电路。

基于面积等效原理,本质是相同的。

PWM电流波:

电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:

直流斩波电路:

等效直流波形

SPWM波:

等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

 

2PWM逆变电路及其控制方法

目前中小功率的逆变电路几乎都采用PWM技术。

逆变电路是PWM控制技术最为重要的应用场合。

本节内容构成了本章的主体

PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。

(1)计算法和调制法

1、计算法

根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形。

缺点:

繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化

2、调制法

输出波形作调制信号,进行调制得到期望的PWM波;

通常采用等腰三角波或锯齿波作为载波;

等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;

与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。

调制信号波为正弦波时,得到的就是SPWM波;

调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波。

结合IGBT单相桥式电压型逆变电路对调制法进行说明:

设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补。

控制规律:

uo正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V4导通时,uo等于Ud,V4关断时,负载电流通过V1和VD3续流,uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,仍有uo=Ud,V4断,V3通后,io从V3和VD1续流,uo=0,uo总可得到Ud和零两种电平。

uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。

图6-4单相桥式PWM逆变电路

单极性PWM控制方式(单相桥逆变):

在ur和uc的交点时刻控制IGBT的通断。

ur正半周,V1保持通,V2保持断,当ur>

uc时使V4通,V3断,uo=Ud,当ur<

uc时使V4断,V3通,uo=0。

ur负半周,V1保持断,V2保持通,当ur<

uc时使V3通,V4断,uo=-Ud,当ur>

uc时使V3断,V4通,uo=0,虚线uof表示uo的基波分量。

波形见图6-5。

图6-5单极性PWM控制方式波形

双极性PWM控制方式(单相桥逆变):

在ur半个周期内,三角波载波有正有负,所得PWM波也有正有负。

在ur一周期内,

输出PWM波只有±

Ud两种电平,仍在调制信号ur和载波信号uc的交点控制器件通断。

ur正负半周,对各开关器件的控制规律相同,当ur>

uc时,给V1和V4导通信号,给V2和V3关断信号,如io>

0,V1和V4通,如io<

0,VD1和VD4通,uo=Ud,当ur<

uc时,给V2和V3导通信号,给V1和V4关断信号,如io<

0,V2和V3通,如io>

0,VD2和VD3通,uo=-Ud。

波形见图6-6。

单相桥式电路既可采取单极性调制,也可采用双极性调制。

图6-6双极性PWM控制方式波形

双极性PWM控制方式(三相桥逆变):

见图6-7。

三相PWM控制公用uc,三相的调制信号urU、urV和urW依次相差120°

U相的控制规律:

当urU>

uc时,给V1导通信号,给V4关断信号,uUN´

=Ud/2,当urU<

uc时,给V4导通信号,给V1关断信号,uUN´

=-Ud/2;

当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。

uUN´

、图6-7三相桥式PWM型逆变电路

uVN´

和uWN´

的PWM波形只有±

Ud/2两种电平,uUV波形可由uUN´

-uVN´

得出,当1和6通时,uUV=Ud,当3和4通时,uUV=-Ud,当1和3或4和6通时,uUV=0。

波形见图6-8。

输出线电压PWM波由±

Ud和0三种电平构成,负载相电压PWM波由(±

2/3)Ud、(±

1/3)Ud和0共5种电平组成。

图6-8三相桥式PWM逆变电路波形

防直通死区时间:

同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施加关断信号的死区时间。

死区时间的长短主要由器件关断时间决定。

死区时间会给输出PWM波带来影响,使其稍稍偏离正弦波。

特定谐波消去法(SelectedHarmonicEliminationPWM—SHEPWM):

计算法中一种较有代表性的方法,图6-9。

输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。

为减少谐波并简化控制,要尽量使波形对称。

首先,为消除偶次谐波,使波形正负两半周期镜对称,即:

(6-1)

图6-9特定谐波消去法的输出PWM波形

其次,为消除谐波中余弦项,使波形在半周期内前后1/4周期以π/2为轴线对称。

(6-2)

四分之一周期对称波形,用傅里叶级数表示为:

(6-3)

式中,an为

图6-9,能独立控制a1、a2和a3共3个时刻。

该波形的an为

(6-4)

式中n=1,3,5,…

确定a1的值,再令两个不同的an=0,就可建三个方程,求得a1、a2和a3。

消去两种特定频率的谐波:

在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,可考虑消去5次和7次谐波,得如下联立方程:

(6-5)

给定a1,解方程可得a1、a2和a3。

a1变,a1、a2和a3也相应改变。

一般,在输出电压半周期内器件通、断各k次,考虑PWM波四分之一周期对称,k个开关时刻可控,除用一个控制基波幅值,可消去k-1个频率的特定谐波,k越大,开关时刻的计算越复杂。

除计算法和调制法外,还有跟踪控制方法,在6.3节介绍

(2)异步调制和同步调制

载波比——载波频率fc与调制信号频率fr之比,N=fc/fr。

根据载波和信号波是否同步及载波比的变化情况,PWM调制方式分为异步调制和同步调制:

1、异步调制

异步调制——载波信号和调制信号不同步的调制方式。

通常保持fc固定不变,当fr变化时,载波比N是变化的。

在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。

当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称的不利影响都较小,当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大。

因此,在采用异步调制方式时,希望采用较高的载波频率,以使在信号波频率较高时仍能保持较大的载波比。

2、同步调制

同步调制——N等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定。

三相,公用一个三角波载波,且取N为3的整数倍,使三相输出对称。

为使一相的PWM波正负半周镜对称,N应取奇数。

当N=9时的同步调制三相PWM波形如图6-10所示。

fr很低时,fc也很低,由调制带来的谐波不易滤除,fr很高时,fc会过高,使开关器件难以承受。

为了克服上述缺点,可以采用分段同步调制的方法。

3、分段同步调制

把fr范围划分成若干个频段,每个频段内保持N恒定,不同频段N不同。

在fr高的频段采用较低的N,使载波频率不致过高,在fr低的频段采用较高的N,使载波频率不致过低。

图6-11,分段同步调制一例。

为防止fc在切换点附近来回跳动,采用滞后切换的方法。

同步调制比异步调制复杂,但用微机控制时容易实现。

可在低频输出时采用异步调制方式,高频输出时切换到同步调制方式,这样把两者的优点结合起来,和分段同步方式效果接近。

图6-10同步调制三相PWM波形

图6-11分段同步调制方式举例

(3)规则采样法

按SPWM基本原理,自然采样法中要求解复杂的超越方程,难以在实时控制中在线计算,工程应用不多。

规则采样法特点:

工程实用方法,效果接近自然采样法,计算量小得多。

规则采样法原理:

图6-12,三角波两个正峰值之间为一个采样周期Tc。

自然采样法中,脉冲中点不和三角波一周期中点(即负峰点)重合。

规则采样法使两者重合,每个脉冲中点为相应三角波中点,计算大为简化。

三角波负峰时刻tD对信号波采样得D点,过D作水平线和三角波交于A、B点,在A点时刻tA和B点时刻tB控制器件的通断,脉冲宽度δ和用自然采样法得到的脉冲宽度非常接近。

图6-12规则采样法

规则采样法计算公式推导:

正弦调制信号波公式中,a称为调制度,0≤a<

1;

ωr为信号波角频率。

从图6-12因此可得:

(6-6)

三角波一周期内,脉冲两边间隙宽度(6-7)

三相桥逆变电路的情况:

通常三相的三角波载波公用,三相调制波相位依次差120º

,同一三角波周期内三相的脉宽分别为δU、δV和δW,脉冲两边的间隙宽度分别为δ´

u、δ´

v和δ´

w,同一时刻三相正弦调制波电压之和为零,由式(6-6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1