污水厂尾水双膜法处理工艺Word下载.docx

上传人:b****4 文档编号:14115152 上传时间:2022-10-18 格式:DOCX 页数:9 大小:513.63KB
下载 相关 举报
污水厂尾水双膜法处理工艺Word下载.docx_第1页
第1页 / 共9页
污水厂尾水双膜法处理工艺Word下载.docx_第2页
第2页 / 共9页
污水厂尾水双膜法处理工艺Word下载.docx_第3页
第3页 / 共9页
污水厂尾水双膜法处理工艺Word下载.docx_第4页
第4页 / 共9页
污水厂尾水双膜法处理工艺Word下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

污水厂尾水双膜法处理工艺Word下载.docx

《污水厂尾水双膜法处理工艺Word下载.docx》由会员分享,可在线阅读,更多相关《污水厂尾水双膜法处理工艺Word下载.docx(9页珍藏版)》请在冰豆网上搜索。

污水厂尾水双膜法处理工艺Word下载.docx

  1.1试验装置

  试验流程如图1所示

  试验在污水处理厂深度处理车间进行,原水经进水泵加压进入砂滤罐,去除悬浮物、胶体、藻类等不溶性污染物。

经超滤增压泵加压后进入超滤膜单元,超滤出水作为纳滤进水,由纳滤增压泵加压后进入纳滤单元。

超滤采纳内压式膜壳一体式超滤膜,两支并联,单支形状尺寸为φ90mmx590mm,合金PAN膜丝,平安运行时pH值范围为2~11,运行温度为5~40℃。

纳滤采纳DF-400型纳滤膜,两支并联,浓水与第三支串联,单支膜芯的尺寸为φ70mmx340mm,膜材质为芳香聚酰胺。

  1.2试验用水

  采纳城市污水厂生化处理后髙效沉淀池岀水作为试验原水,详细水质:

COD为21~52mg/L,平均值为29mg/L;

TP为0.43-0.84mg/L,平均值为0.6mg/L;

NH3-N为0.24-0.77mg/L,平均值为0.4mg/L;

电导率为870-890μS/cm,平均值为881μS/cm。

  1.3试验方法

  装置采纳间歇运行的方式,超滤产水进入超滤储水箱,达到设定水位上限时超滤停止运行,纳滤开头运行。

超滤储水箱水位下降到设定水位下限时,超滤开头运行,纳滤停止运行。

通过进水阀门调整进水流速,采纳转子流量计测定进出水流速,使超滤进水流速分别为10、15、20、25、30、35L/min,纳滤进水流速分别为2.75、3、3.25、3.5、3.75、4L/min,记录各个进水流速下超滤和纳滤的产水流速、跨膜压差、电导率值。

在超滤进水流速为25L/min,纳滤进水流速为4L/min的条件下,每110min记录一次跨膜压差、电导率、COD、TP、NH3-N值,考察累积过滤水量对膜性能的影响。

当跨膜压差上升、滤膜发生污染时,超滤膜依次采纳物理清洗(反洗30min,正洗20min)、pH值为11的NaOH浸泡14h、2.7%-3.3%的H2O2浸泡6h、pH值为3的HC1浸泡6h。

纳滤膜依次采纳pH值为10的NaOH浸泡6h、pH值为3的HCl浸泡6h进行清洗再生,记录清洗前后跨膜压差的变化。

物理清洗在无压或低压大流量条件下,利用水流剪切力清除膜面污染物。

化学浸泡清洗时关闭膜组件进出水阀门,每种化学药剂清洗后用清水冲洗至出水PH值显中性。

  1.4分析项目及方法

  COD采纳重锯酸盐法测定,TP采纳钮锁抗分光光度法测定,NH3-N采纳纳氏试剂分光光度法测定;

电导率采纳CCT-3320V电导率仪测定。

  二、结果与争论

  2.1进水流速对膜性能的影响

  2.1.1进水流速对膜产水流速和跨膜压差的影响

  图2为进水流速对膜产水流速和跨膜压差的影响。

可知,随着进水流速的上升,超滤膜、纳滤膜的产水流速、跨膜压差均呈增大趋势。

  电导率反映了水中溶解性离子的含量,通过电导率变化分析进水流速对膜分别性能的影响,结果如图3所示。

可以看出,超滤膜对电导率的去除效果并不显著,保持在1%以下,超滤仅能去除附着在不溶性大颗粒杂质上的少量离子,水中游离的离子仍能透过超滤膜。

超滤产水电导率的大小与进水电导率值有关,其随着进水电导率的减小而下降。

而纳滤对电导率的去除效果较好,平均去除率保持在88%左右,且出水电导率稳定。

纳滤膜对电导率的去除率随进水流速和跨膜压差的增大稍有提高,去除率仅从86%提高到90%。

纳滤膜的孔径较小,表面带有电荷,存在Donnan作用,高价态的离子具有更高的电势能,与膜间存在的相互作用力大,简单被膜截留,因此纳滤能更好地降低原水电导率。

  综合考虑产水流速、电导率去除效果、电耗等因素,在超滤膜的进水流速为25L/min、纳滤膜的进水流速为4L/min条件下,考察累积过滤水量对膜性能的影响。

  2.2累积过滤水量对膜性能的影响

  2.2.1累积过滤水量对跨膜压差的影响

  累积过滤水量对跨膜压差的影响如图4所示。

  由图4可知,在试验进水温度为10—12316;

15℃条件下,随着累积过滤水量的增加超滤膜跨膜压差上升明显,由0.29MPa最高升至0.4MPa,由于原水污染程度存在波动,中间部分点的压差略有降低。

从累积过滤水量对纳滤跨膜压差的影响可知,纳滤膜的跨膜压差在0.4MPa左右波动,无明显上升趋势。

超滤膜为纳滤膜供应了相对稳定的进水条件,有效减轻了纳滤膜污染的发生。

  2.2.2累积过滤水量对膜分别性能的影响

  双膜法对COD的去除效果如图5所示。

可以看出,随着累积过滤水量的增加,超滤膜对COD的去除率整体呈上升趋势,从37%最高升至59%。

初始过滤阶段超滤膜清洁,能够透过粒径较大的污染物质,随着累积过滤水量的增加,膜表面发生污染,膜孔堵塞,膜的有效孔径减小,能够截留粒径更小的污染物,从而使COD去除率增大。

原水经超滤膜处理后,COD浓度在9~21mg/L,为纳滤膜供应了较为稳定的进水条件。

经纳滤膜处理后对COD的去除率为83%~94%,出水COD平均为3.8mg/L。

纳滤膜对COD的去除力量良好,能进一步降低岀水COD,可作为提高COD去除率的保障措施。

  双膜法对TP的去除效果如图6所示。

超滤膜对TP的去除率随着累积过滤水量的增加先上升再趋于平缓,最终呈下降的趋势。

当累积过滤水量为450~2250L时,超滤膜对TP的去除率从47%上升至71%;

当累积过滤水量为2250-5850L时,超滤膜对TP的去除率稳定在64%左右;

当累积过滤水量为5850~7200L时,TP去除率从68%最低下降至56%。

经纳滤膜处理后对TP的去除效果良好,基本稳定在96%左右。

这是由于超滤膜的孔径较大,主要以筛分作用为主,过滤初期膜的有效孔径较大,通过的污染物颗粒较多,过滤中期超滤膜吸附的污染物颗粒趋于饱和,去除率达到稳定状态,过滤后期超滤膜吸附的污染物脱离滤膜,受浓差极化影响,去除率下降。

磷在污水中主要以磷酸盐、聚磷酸盐、有机盐等形式存在。

由于Donnan作用,纳滤膜与水溶液之间形成电位差,阻挡同名离子透过纳滤膜,而异名离子被吸附在纳滤膜上,因此纳滤膜对TP的去除效果良好。

  双膜法对NH3-N的去除效果如图7所示。

  由图7可知,超滤膜对NH3-N的去除率平均为27%,且超滤膜产水与原水曲线的变化趋势基本全都,说明超滤膜对NH3-N的去除效果与进水NH3-N浓度有关。

双膜法对NH3-N的平均去除率为68%,且去除效果与进水水质呈正相关。

超滤膜对NH3-N的去除以筛分作用为主,原水浊度较高时具有较好的去除效果,缘由在于水中颗粒物质较多,颗粒相互碰撞吸附能够去除部分NH3-N。

纳滤膜的孔径约为超滤膜的1/10,能进一步去除透过超滤膜的NH3-N。

水中NH3-N主要以离子形态存在,纳滤膜与污水发生静电作用,能够有效去除溶解性氮。

  2.3滤膜的再生

  超滤主要通过筛分作用达到去除污染物的效果,分别过程中水中的悬浮物、胶体、微生物、无机盐等引起膜孔堵塞以及在膜表面沉积结晶都会造成跨膜压差上升、产水率下降,进而导致膜污染。

史阂戈等认为,运行过程中污染物在膜表面浓缩引起的浓差极化现象造成了跨膜压差增大,使出水水质变差。

筛分作用、粒径排斥和Donnan作用都是纳滤膜分别污染物的主要原理。

刘蕊等⑼认为,膜孔堵塞、浓差极化、滤饼层的形成等因素造成了纳滤膜污染。

超滤膜由于孔径较大,在过滤初期采纳物理冲洗的方法能够有效去除由不溶性颗粒堵塞膜孔造成的膜污染。

过滤后期浓差极化严峻,形成的滤饼层需采纳化学清洗的方法才能有效再生滤膜。

因此,本试验采纳物理冲洗和化学浸泡的方法对超滤膜进行清洗再生。

纳滤膜孔径较小,且在运行中跨膜压差没有明显上升,可采纳酸碱清洗法再生纳滤膜。

  膜分别的基本表达式见式

(1)。

可见,掌握J肯定时,通过观看△P的变化来反映膜阻力R的变化,进而分析膜污染状况

  式中:

J为单位膜面积的流率,m/s,A为膜面积,m2,V为透过液体积,m3,t为时间,s;

△P为跨膜压差,Pa,μ为料液黏度,Pa—8226;

s;

R为膜阻力,m-1。

  2.3.1超滤膜清洗

  在超滤膜稍微污染和较为严峻污染两种状况下,考察了超滤膜的清洗效果,结果如图8所示(膜比压差为污染后跨膜压差与初始跨膜压差的比值)。

当膜污染程度较轻(跨膜压差从0.29MPa上升到0.33MPa)时,采纳超滤岀水反冲洗30min,再低压正向冲洗20min后,跨膜压差恢复到0.29MPa,恢复效果良好。

当超滤膜污染较严峻(跨膜压差从0.29MPa最高上升到0.4MPa)时,停机重启后跨膜压差得到部分恢复,为0.39MPa。

采纳上述物理清洗方法后,跨膜压差恢复至0.36MPa。

采纳NaOH浸泡14h后,跨膜压差恢复至0.34MPa。

采纳出。

H2O2浸泡6h后,超滤膜的表面污垢明显脱离滤膜表面,跨膜压差恢复至0.32MPa。

采纳HCl浸泡6h后,跨膜压差恢复至0.31MPa。

  在超滤膜稍微污染的条件下,主要以不溶性浊度污染为主,采纳物理清洗的方法能有效冲刷掉不溶性颗粒,跨膜压差恢复良好。

在超滤膜污染较重的条件下,有机物污染和微生物污染占总污染的比例增大。

停机重启后消退了浓差极化的影响,跨膜压差稍有恢复。

物理清洗方法难以去除有机物污染和微生物污染等引起的综合污染,NaOH清洗主要能够去除有机物及油脂引起的污染。

H2O2能够达到杀灭细菌的效果,盐酸可去除沉积在滤膜上的无机盐类污染物。

  2.3.2纳滤膜清洗

  超滤出水作为纳滤进水可以有效延缓纳滤膜污染的发生,在相同时段内纳滤膜没有发生严峻污染,纳滤跨膜压差从0.4MPa最高升至0.42MPa。

经过NaOH浸泡6h后,低压冲洗至出水pH值恢复中性,岀水电导率稳定以后,采纳HCl浸泡6h,最终跨膜压差可恢复至0.39MPa,低于初始跨膜压差。

分析缘由,进水污染程度存在波动,导致纳滤膜清洗后跨膜压差略低于初始值。

碱性溶液清洗能够起到去除油脂及有机物污染作用,酸性清洗液主要用于去除无机类杂质污染。

在纳滤膜稍微污染的状况下,采纳酸碱浸泡清洗的效果良好。

  三、结论

  ①随着进水流速的增大,超滤、纳滤的产水流速和跨膜压差均上升。

超滤膜对电导率的去除率低于1%,且出水电导率与进水电导率呈正相关。

纳滤对电导率的去除率随进水流速、跨膜压差的上升而增大。

  ②随着累积过滤水量的增加,保持进水流速肯定的条件下,跨膜压差渐渐上升,滤膜受到污染。

双膜法对COD、TP、NH3-N的平均去除率分别达到87%、96%、68%。

采纳双膜法后,出水COD、TP、NH3-N的平均值分别为3.8,0.02,0.12mg/L,远低于污水排放一级A标准和地表水IV类水标准。

  ③超滤为纳滤供应了稳定的进水水质条件,可有效延缓纳滤膜污染的发生。

超滤膜发生稍微污染后,采纳物理清洗

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1