第七章 双馈风力发电机工作原理Word格式文档下载.docx

上传人:b****3 文档编号:14092793 上传时间:2022-10-18 格式:DOCX 页数:35 大小:874.94KB
下载 相关 举报
第七章 双馈风力发电机工作原理Word格式文档下载.docx_第1页
第1页 / 共35页
第七章 双馈风力发电机工作原理Word格式文档下载.docx_第2页
第2页 / 共35页
第七章 双馈风力发电机工作原理Word格式文档下载.docx_第3页
第3页 / 共35页
第七章 双馈风力发电机工作原理Word格式文档下载.docx_第4页
第4页 / 共35页
第七章 双馈风力发电机工作原理Word格式文档下载.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

第七章 双馈风力发电机工作原理Word格式文档下载.docx

《第七章 双馈风力发电机工作原理Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《第七章 双馈风力发电机工作原理Word格式文档下载.docx(35页珍藏版)》请在冰豆网上搜索。

第七章 双馈风力发电机工作原理Word格式文档下载.docx

但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的基本工作原理

设双馈电机的定转子绕组均为对称绕组,电机的极对数为,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速称为同步转速,它与电网频率及电机的极对数的关系如下:

(3-1)

同样在转子三相对称绕组上通入频率为的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:

(3-2)

由式3-2可知,改变频率,即可改变,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

因此,若设为对应于电网频率为50Hz时双馈发电机的同步转速,而为电机转子本身的旋转速度,则只要维持,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为不变。

(3-3)

双馈电机的转差率,则双馈电机转子三相绕组内通入的电流频率应为:

(3-4)

公式3-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即)的电流,则在双馈电机的定子绕组中就能产生50Hz的恒频电势。

所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。

根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:

1.亚同步运行状态:

在此种状态下,由转差频率为的电流产生的旋转磁场转速与转子的转速方向相同,因此有。

2.超同步运行状态:

在此种状态下,改变通入转子绕组的频率为的电流相序,则其所产生的旋转磁场的转速与转子的转速方向相反,因此有。

3.同步运行状态:

在此种状态下,转差频率,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。

下面从等效电路的角度分析双馈电机的特性。

首先,作如下假定:

1.只考虑定转子的基波分量,忽略谐波分量

2.只考虑定转子空间磁势基波分量

3.忽略磁滞、涡流、铁耗

4.变频电源可为转子提供能满足幅值、频率、功率因数要求的电源,不计其阻抗和损耗。

发电机定子侧电压电流的正方向按发电机惯例,转子侧电压电流的正方向按电动机惯例,电磁转矩与转向相反为正,转差率S按转子转速小于同步转速为正,参照异步电机的分析方法,可得双馈发电机的等效电路,如图3-1所示:

根据等效电路图,可得双馈发电机的基本方程式:

(3-5)

式中:

●、分别为定子侧的电阻和漏抗

●、分别为转子折算到定子侧的电阻和漏抗

●为激磁电抗

●、、分别为定子侧电压、感应电势和电流

●、分别为转子侧感应电势,转子电流经过频率和绕组折算后折算到定子侧的值。

●转子励磁电压经过绕组折算后的值,为再经过频率折算后的值。

频率归算:

感应电机的转子绕组其端电压为,此时根据基尔霍夫第二定律,可写出转子绕组一相的电压方程:

=〉=〉

式中,为转子电流;

为转子每相电阻。

图3-1表示与式5-20相对应的转子等效电路。

为转子不转时的感应电动势。

绕组归算:

转子的电磁功率(转差功率)

,由此机械功率

 

其中,为同步转速、为机械转速。

由上两式可看出,机械转矩与电磁转矩一致。

普通的绕线转子电机的转子侧是自行闭合的,

根据基尔霍夫电压电流定律可以写出普通绕线式转子电机的基本方程式:

(3-6)

从等值电路和两组方程的对比中可以看出,双馈电机就是在普通绕线式转子电机的转子回路中增加了一个励磁电源,恰恰是这个交流励磁电源的加入大大改善了双馈电机的调节特性,使双馈电机表现出较其它电机更优越的一些特性。

下面我们根据两种电机的基本方程画出各自的矢量图,从矢量图中说明引入转子励磁电源对有功和无功的影响。

从矢量图中可以看出,对于传统的绕线式转子电机,当运行的转差率s和转子参数确定后,定转子各相量相互之间的相位就确定了,无法进行调整。

即当转子的转速超过同步转速之后,电机运行于发电机状态,此时虽然发电机向电网输送有功功率,但是同时电机仍然要从电网中吸收滞后的无功进行励磁。

但从图3-4中可以看出引入了转子励磁电压之后,定子电压和电流的相位发生了变化,因此使得电机的功率因数可以调整,这样就大大改善了发电机的运行特性,对电力系统的安全运行就有重要意义。

二、双馈发电机的功率传输关系

风力机轴上输入的净机械功率(扣除损耗后)为,发电机定子向电网输出的电磁功率为,转子输入/输出的电磁功率为,s为转差率,转子转速小于同步转速时为正,反之为负。

又称为转差功率,它与定子的电磁功率存在如下关系:

如果将定义为转子吸收的电磁功率,那么将有:

此处s可正可负,即若,则,转子从电网吸收电磁功率,若,则,转子向电网馈送电磁功率。

下面考虑发电机超同步和亚同步两种运行状态下的功率流向:

2.1超同步运行状态

顾名思义,超同步就是转子转速超过电机的同步转速时的一种运行状态,我们称之为正常发电状态。

(因为对于普通的异步电机,当转子转速超过同步转速时,就会处于发电机状态)。

根据图中的功率流向和能量守恒原理,流入的功率等于流出的功率

因为发电机超同步运行,所以,所以上式可进一步写成:

将上述式子归纳得:

超同步速,,

2.2亚同步运行状态

即转子转速低于同步转速时的运行状态,我们可以称之为补偿发电状态(在亚同步转速时,正常应为电动机运行,但可以在转子回路通入励磁电流使其工作于发电状态)

根据图中3-7以及能量守恒原理,流入的功率等于流出的功率:

因为发电机亚同步运行,所以,所以上式可进一步写成:

将上述式子归纳得到,亚同步速,,

三、双馈电机的数学模型

上一节,我们从双馈电机的稳态等效电路以及功率流向的角度分析了双馈电机的工作原理,但这对于控制来说是远远不够的,本节我们将从数学模型的角度来分析双馈电机,为下一步的控制做准备。

双馈电机的数学模型与三相绕线式感应电机相似,是一个高阶、非线性、强耦合的多变量系统。

为了建立数学模型,一般作如下假设:

1.三相绕组对称,忽略空间谐波,磁势沿气隙圆周按正弦分布

2.忽略磁路饱和,各绕组的自感和互感都是线性的

3.忽略铁损

4.不考虑频率和温度变化对绕组的影响。

在建立基本方程之前,有几点必须说明:

1.首先要选定好磁链、电流和电压的正方向。

图3-9所示为双馈电机的物理模型和结构示意图。

图中,定子三相绕组轴线A、B、C在空间上是固定,a、b、c为转子轴线并且随转子旋转,为转子a轴和定子A轴之间的电角度。

它与转子的机械角位移的关系为,为极对数。

各轴线正方向取为对应绕组磁链的正方向。

定子电压、电流正方向按照发电机惯例标示,正值电流产生负值磁链;

转子电压、电流正方向按照电动机惯例标示,正值电流产生正值磁链。

2.为了简单起见,在下面的分析过程中,我们假设转子各绕组各个参数已经折算到定子侧,折算后定、转子每相绕组匝数相等。

于是,实际电机就被等效为图3-9所示的物理模型了。

双馈电机的数学模型包括电压方程、磁链方程、运动方程、电磁转矩方程等。

3.1电压方程

选取下标s表示定子侧参数,下标r表示转子侧参数。

定子各相绕组的电阻均取值为,转子各相绕组的电阻均取值为。

于是,交流励磁发电机定子绕组电压方程为:

转子电压方程为:

可用矩阵表示为:

(3-7)

或写成:

——定子和转子相电压的瞬时值;

——定子和转子相电流的瞬时值;

——各组绕组的全磁链;

——定子和转子的绕组电阻

——微分算子

3.2磁链方程

定转子各绕组的合成磁链是由各绕组自感磁链与其它绕组互感磁链组成,按照上面的磁链正方向,磁链方程式为:

(3-8)

式中的电感是个6*6的矩阵,主对角线元素是与下标对应的绕组的自感,其他元素是与下标对应的两绕组间的互感。

由于各相绕组的对称性,可认定定子各相漏感相等,转子各相漏感也相等,定义定子绕组每相漏感为,定子每相主电感为,转子绕组每相漏感为,转子每相主电感为,由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相等,故可认为:

定子各相自感为:

转子各相自感为:

两相绕组之间只有互感。

互感可分为两类:

1.定子三相彼此之间和转子三相彼此之间的位置是固定的,故互感为常值

2.定子任一相和转子任一相之间的位置是变化的,互感是的函数

先看其中的第一类互感,由于三相绕组的轴线在空间的相位差是,在假设气隙磁通为正弦分布的条件下,忽略气隙磁场的高次谐波,互感为:

于是:

至于第二类定、转子间的互感,当忽略气隙磁场的高次谐波,则可近似为是定、转子绕组轴线电角度的余弦函数。

当两套绕组恰好在同一轴线上时,互感有最大值(互感系数),于是:

代入磁链方程,就可以得到更进一步的磁链方程。

这里为方便起见,将他写成分块矩阵的形式:

其中:

和两个分块矩阵互为转置,且与转角位置有关,他们的元素是变参数,这是系统非线性的一个根源。

为了把变参数转化为常参数需要进行坐标变换,这将在后面讨论。

需要注意的是:

1.定子侧的磁链正方向与电流正方向关系是正值电流产生负值磁链,不同于一般的电动机惯例,所以式3-8中出现了负号“-”;

2.转子绕组经过匝数比变换折算到定子侧后,定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可以认为转子绕组主电感、定子绕组主电感与定转子绕组间互感系数都相等。

3.3运动方程

交流励磁电机内部电磁关系的建立,离不开输入的机械转矩和由此产生的电磁转矩之间的平衡关系。

简单起见,忽略电机转动部件之间的摩擦,则转矩之间的平衡关系为:

(3-9)

式中,为原动机输入的机械转矩,为电磁转矩,为系统的转动惯量,为电机极对数,为电机的电角速度。

从磁场能量根据机电能量转换原理,可以得出电磁转矩方程:

=

应该指出,上述公式是在磁路为线性、磁场在空间按正弦分布的假定条件下得出的,但对定、转子的电流波形没有

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1