SBR反应池的设计计算解析文档格式.docx

上传人:b****1 文档编号:14058534 上传时间:2022-10-17 格式:DOCX 页数:21 大小:315.76KB
下载 相关 举报
SBR反应池的设计计算解析文档格式.docx_第1页
第1页 / 共21页
SBR反应池的设计计算解析文档格式.docx_第2页
第2页 / 共21页
SBR反应池的设计计算解析文档格式.docx_第3页
第3页 / 共21页
SBR反应池的设计计算解析文档格式.docx_第4页
第4页 / 共21页
SBR反应池的设计计算解析文档格式.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

SBR反应池的设计计算解析文档格式.docx

《SBR反应池的设计计算解析文档格式.docx》由会员分享,可在线阅读,更多相关《SBR反应池的设计计算解析文档格式.docx(21页珍藏版)》请在冰豆网上搜索。

SBR反应池的设计计算解析文档格式.docx

沉砂斗上口宽:

(3—16)

砂斗容积:

(3—17)

(8)沉砂室高度h3:

采用重力排砂,设池底坡度为0.06,坡向砂斗

(3—18)

(9)池总高度:

设超高h1=0.3m

H=h1+h2+h3=0.3+0.33+0.48=1.11m(3—19)

3.4SBR反应池

3.4.1设计说明

设计方法有两种:

负荷设计法和动力设计法,本工艺采用负荷设计法。

根据工艺流程论证,SBR法具有比其他好氧处理法效果好,占地面积小,投资省的特点,因而选用SBR法。

SBR是序批式间歇活性污泥法的简称。

该工艺由按一定时间顺序间歇操作运行的反应器组成。

其运行操作在空间上是按序排列、间歇的。

污水连续按顺序进入每个池,SBR反应器的运行操作在时间上也是按次序排列的。

SBR工艺的一个完整的操作过程,也就是每个间歇反应器在处理废水时的操作过程,包括进水期、反应期、沉淀期、排水排泥期、闲置期五个阶段。

这种操作周期是周而复始进行的,以达到不断进行污水处理的目的。

对于单个的SBR反应器来说,在时间上的有效控制和变换,即达到多种功能的要求,非常灵活。

(1)进水期

进水期是反应池接纳污水的过程。

由于充水开始是上个周期的闲置期,所以此时反应器中剩有高浓度的活性污泥混合液,这也就相当于活性污泥法中污泥回流作用。

SBR工艺间歇进水,即在每个运行周期之初在一个较短时间内将污水投入反应器,待污水到达一定位置停止进水后进行下一步操作。

因此,充水期的SBR池相当于一个变容反应器。

混合液基质浓度随水量增加而加大。

充水过程中逐步完成吸附、氧化作用。

SBR充水过程,不仅水位提高,而且进行着重要的生化反应。

充水期间可进行曝气、搅拌或静止。

曝气方式包括非限制曝气(边曝气边充水)、限制曝气(充完水曝气)半限制曝气(充水后期曝气)。

(2)反应期

在反应阶段,活性污泥微生物周期性地处于高浓度、低浓度的基质环境中,反应器相应地形成厌氧—缺氧—好氧的交替过程。

虽然SBR反应器内的混合液呈完全混合状态,但在时间序列上是一个理想的推流式反应器装置。

SBR反应器的浓度阶梯是按时间序列变化的。

能提高处理效率,抗冲击负荷,防止污泥膨胀。

(3)沉淀期

相当于传统活性污泥法中的二次沉淀池,停止曝气搅拌后,污泥絮体靠重力沉降和上清液分离。

本身作为沉淀池,避免了泥水混合液流经管道,也避免了使刚刚形成絮体的活性污泥破碎。

此外,SBR活性污泥是在静止时沉降而不是在一定流速下沉降的,所以受干扰小,沉降时间短,效率高。

(4)排水期

活性污泥大部分为下周期回流使用,过剩污泥进行排放,一般这部分污泥仅占总污泥的30%左右,污水排出,进入下道工序。

(5)闲置期

作用是通过搅拌、曝气或静止使其中微生物恢复其活性,并起反硝化作用而进行脱水。

3.4.2SBR反应池容积计算

设计参数:

表3—1处理要求

项目

进水水质mg/L

出水水质mg/L

CODcr

BOD5

NH3-N

TP

SS

600

300

40

10~12

350

≤60

≤20

≤15

≤1

设SBR运行每一周期时间为6h,进水时间1.5h,反应时间2.0h,沉淀时间1.0h,排水时间1.5h:

周期数:

根据运行周期时间安排和自动控制特点,SBR反应池设置4个。

SBR处理污泥负荷设计为Ns=0.3

,设f=0.85,SVI=90(SVI在100以下沉降性良好),则

(1)污泥沉降体积为:

(3—20)

(2)每池的有效容积为:

(3—21)

(3)选定每池尺寸L×

H=15×

7.5×

4.5=506.25m3>

436.25m3(3—22)

采用超高0.5m,故全池深为5.0m

(4)池内最低水位:

(3—23)

3.4.3排泥量及排泥系统

(1)SBR产泥量

SBR的剩余污泥主要来自微生物代谢的增值污泥,还有很少部分由进水悬浮物沉淀形成。

SBR生物代谢产泥量为

=

(3—24)

式中:

a——微生物代谢增系数,kgVSS/kgBOD

b——微生物自身氧化率,l/d

根据生活污泥性质,参考类似经验数据,设a=0.70,b=0.05,则有:

(3—25)

假定排泥含水率为P=99.2%,则排泥量为:

(3—26)

考虑一定安全系数,则每天排泥量为95m3/d。

3.4.4需氧量及曝气系统设计计算

(1)需氧量计算

SBR反应池需氧量O2计算式为

O2=

(3—27)

a’——微生物代谢有机物需氧率,kg/kg

b’——微生物自氧需氧率,l/d

Sr——去除的BOD5(kg/m3)

经查有关资料表,取a’=0.50,b’=0.190,需氧量为:

(3—28)

(2)供气量计算

设计采用塑料SX-1型空气扩散器,敷设SBR反应池池底,淹没深度H=4.5m。

SX-1型空气扩散器的氧转移效率为EA=8%。

查表知20℃,30℃时溶解氧饱和度分别为

空气扩散器出口处的绝对压力Pb为:

(3—29)

空气离开反应池时,氧的百分比为:

Ot=

=19.6%(3—30)

反应池中溶解氧平均饱和度为:

(按最不利温度条件计算)

=7.63(

)=1.17

7.63=8.93(mg/)(3—31)

水温20℃时曝气池中溶解氧平均饱和度为:

=1.17

9.17=10.73(mg/L)(3—32)

20℃时脱氧清水充氧量为:

(3—33)

α——污水中杂质影响修正系数,取0.8(0.78~0.99)

β——污水含盐量影响修正系数,取0.9(0.9~0.97)

Cj——混合液溶解氧浓度,取c=4.0最小为2

ρ——气压修正系数

=1

反应池中溶解氧在最大流量时不低于2.0mg/L,即取Cj=2.0,计算得:

=1.38

66.13=91.26(kgO2/h)(3—34)

SBR反应池供气量Gs为:

(3—35)

每立方污水供气量为:

(m3空气/m3污水)(3—36)

VF——反应池进水容积(m3/h)

去除每千克BOD5的供气量为:

)(3—37)

Sr——去除的BOD5(

去除每千克BOD5的供氧量为:

)(3—38)

3.4.5空气管计算

空气管的平面布置如图所示。

鼓风机房出来的空气供气干管,在相邻两SBR池的隔墙上设两根供气支管,为4个SBR池供气。

在每根支管上设6条配气竖管,为SBR池配气,4池共4根供气支管,24条配气管竖管。

每条配气管安装SX-I扩散器10个,每池共60个扩散器,全池共240个扩散器。

每个扩散器的服务面积为112.5m2/60个=1.88m2/个。

空气支管供气量为:

(3—39)

1.25——安全系数

由于SBR反应池交替运行,4根空气支管不同时供气,故空气干管供气量为19.8m3/min。

选用SX-I型盆形曝气器,氧转移效率6~9%,氧动力效率1.5~2.2

供气量20~25m3/h,服务面积1~2m2/个。

3.4.6滗水器

现在的SBR工艺一般都采用滗水器排水。

滗水器排水过程中能随水位的下降而下降,使排出的上清液始终是上层清液。

为防止水面浮渣进入滗水器被排走,滗水器排水口一般都淹没在水下一定深度。

目前SBR使用的滗水器主要有旋转式滗水器,套筒式滗水器和虹吸式滗水器三种。

本工艺采用旋转式滗水器。

旋转式滗水器属于有动力式滗水器,应用广泛,适合大型污水处理厂使用。

本工艺采用XPS-07型旋转式滗水器,处理量700m3/h,最大滗水深度3m。

3.4.7鼓风机房

鼓风机房要给SBR池供气,选用TSD-150型罗茨鼓风机三台,2备1用。

设备参数:

流量:

20.40m3/min;

升压:

44.1kPa;

配套电机型号:

Y200L-4;

功率:

30kW;

转速:

1220r/min;

机组最大重量:

730kg。

3.5絮凝反应池

3.5.1设计说明

深度处理包括混凝、澄清、过滤、活性炭吸附、臭氧氧化、反渗透等,其目的是去除二级处理水中的悬浮物(SS),溶解性有机物(BOD),N,P等污染物质,以满足水环境标准,防止封闭式水域富营养化和污水再利用的水质要求。

混凝的基本原理:

向污水中投入某种化学药剂(常称之为混凝剂),使在水中难以沉淀的胶体状悬浮颗粒或乳状污染物失去稳定后,由于互相碰撞而聚集或聚合、搭接而形成较大的颗粒或絮状物,从而使污染物更易于自然下沉或上浮而被除去。

混凝剂可降低污水的浊度、色度,除去多种高分子物质、有机物、某些重金属毒物和放射性物质。

在水处理中,凝聚是指脱稳的胶粒相互聚集为较大颗粒的过程。

絮凝则指未经脱稳的胶体也可聚结成较大的颗粒现象。

混凝则包括凝聚与絮凝两种过程。

凝聚是瞬时的,只需将化学药剂扩散到全部水中即可。

絮凝则与凝聚作用不同,它需要较长的时间去完成。

但一般情况下两者也不好绝然分开。

因此我们把能凝聚与絮凝作用的药剂统称为混凝剂。

絮凝通常在絮凝池内,以机械或水力等方式造成颗粒碰撞机会,形成易于沉淀或上浮的絮体,最终达到与水分离的目的,反应时间t在1030min之间。

用于水处理的混凝剂要求混凝效果好,对人类健康无害,价廉易得,使用方便,本工艺选择明矾。

3.5.2设计参数

(1)池数一般不少于2个;

(2)搅拌器排数一般为3~4排(不应少于3排),水平搅拌轴应设于池中水深1/2处;

(3)叶轮桨板中心处的线速度,第一排应采用0.4m/s~0.5m/s,最后一排采用0.2m/s,各排线速度应逐渐减小;

(4)水平轴式叶轮直径应比絮凝池水深小0.3m,叶轮尽端与池子侧壁间距不大于0.2m;

(5)水平轴式絮凝池每只叶轮的桨板数一般为4~6块,桨板长度不大于叶轮直径的75%;

(6)同一搅拌器两相邻叶轮应垂直设置;

(7)每根搅拌轴桨板总面积应为水流截面积的10%~20%,不宜超过25%,每块桨板的宽度为桨板长的1/10~1/15,一般采用10~30mm;

(8)絮凝池深度按照水厂标高系统布置确定,一般为3~4m。

3.5.3设计计算

已知设计流量Q=208.3m3/h,采用2座絮凝池:

(1)絮凝池尺寸:

絮凝池有效容积:

絮凝时间取T=20min,则

(3—40)

池长:

水深H取3m,

(3—41)

——系数,一般取1.0~1.3

Z——搅拌轴排数(3~4排)

池子宽度:

(3—42)

(2)搅拌器尺寸:

每排上采用2个搅拌器,设搅拌器间净距离和其离壁的距离为0.05m,每个搅拌器长为:

(3—43)

设搅拌器上缘距水面及下缘距池底的距离为0.15m,则搅拌器外缘直径为:

D=3-2×

0.15=2.7m(3—44)

每个搅拌器上装有四

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1