小学数学几何五大模型教师版Word文档格式.doc

上传人:b****2 文档编号:14057529 上传时间:2022-10-17 格式:DOC 页数:12 大小:1,023KB
下载 相关 举报
小学数学几何五大模型教师版Word文档格式.doc_第1页
第1页 / 共12页
小学数学几何五大模型教师版Word文档格式.doc_第2页
第2页 / 共12页
小学数学几何五大模型教师版Word文档格式.doc_第3页
第3页 / 共12页
小学数学几何五大模型教师版Word文档格式.doc_第4页
第4页 / 共12页
小学数学几何五大模型教师版Word文档格式.doc_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

小学数学几何五大模型教师版Word文档格式.doc

《小学数学几何五大模型教师版Word文档格式.doc》由会员分享,可在线阅读,更多相关《小学数学几何五大模型教师版Word文档格式.doc(12页珍藏版)》请在冰豆网上搜索。

小学数学几何五大模型教师版Word文档格式.doc

2012-8-2810:

09上传

下载附件(20.94KB)

例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

下载附件(47.14KB)

(2)鸟头(共角)定理模型

1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;

2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点

下载附件(7.34KB)

则有:

S△ABC:

S△ADE=(AB×

AC):

(AD×

AE)

我们现在以互补为例来简单证明一下共角定理!

下载附件(4.51KB)

如图连接BE,根据等积变化模型知,S△ADE:

S△ABE=AD:

AB、S△ABE:

S△CBE=AE:

CE,所以S△ABE:

S△ABC=S△ABE:

(S△ABE+S△CBE)=AE:

AC,因此S△ADE:

S△ABC=(S△ADE:

S△ABE)×

(S△ABE:

S△ABC)=(AD:

AB)×

(AE:

AC)。

例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:

AD=5:

2,AE:

EC=3:

2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型

1、梯形中比例关系(“梯形蝴蝶定理”)

23上传

下载附件(9.8KB)

例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

下载附件(89.67KB)

2、任意四边形中的比例关系(“蝴蝶定理”):

25上传

下载附件(8.93KB)

例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。

下载附件(44.88KB)

蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径,通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;

另一方面,也可以得到与面积对应的对角线的比例关系。

(4)相似模型

1、相似三角形:

形状相同,大小不相等的两个三角形相似;

2、寻找相似模型的大前提是平行线:

平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

3、相似三角形性质:

①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;

②相似三角形周长的比等于相似比;

③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有BC平行DE这样的一对平行线!

下载附件(38.08KB)

例、如图,已知在平行四边形ABCD中,AB=16、AD=10、BE=4,那么FC的长度是多少?

下载附件(69.69KB)

(5)燕尾模型

下载附件(4.2KB)

由于阴影部分的形状像一只燕子的尾巴,所以在数学上把这样的几何图形叫做燕尾模型,看一下它都有哪些性质:

S△ABG:

S△ACG=S△BGE:

S△CGE=BE:

CE

S△BGA:

S△BGC=S△GAF:

S△GCF=AF:

CF

S△AGC:

S△BGC=S△AGD:

S△BGD=AD:

BD

例、如图,E、D分别在AC、BC上,且AE:

EC=2:

3,BD:

DC=1:

2,AD与BE交于点F,四边形DFEC的面积等于22平方厘米,求三角形ABC的面积。

二、五大模型经典例题详解

例1、图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?

2012-8-2910:

18上传

下载附件(22.83KB)

例2、如图,Q、E、P、M分别为直角梯形ABCD两边AB、CD上的点,且DQ、CP、ME彼此平行,已知AD=5、BC=7、AE=5、EB=3,求阴影部分三角形PQM的面积。

下载附件(20KB)

例1、如图所示,平行四边形ABCD,BE=AB、CF=2CB、GD=3DC、HA=4AD,平行四边形ABCD的面积为2,求平行四边形ABCD与四边形EFGH的面积比。

下载附件(18.89KB)

例2、如图所示,△ABC的面积为1,BC=5BD、AC=4EC、DG=GS=SE、AF=FG,求△FGS的面积。

下载附件(21.35KB)

例1、如图,正六边形面积为1,那么阴影部分面积为多少?

下载附件(17.79KB)

例2、如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,求余下的四边形OFBC的面积。

下载附件(13.99KB)

例3、如图,已知正方形ABCD的边长为10厘米,E为AD的中点,F为CE的中点,G为BF的中点,求三角形BDG的面积。

下载附件(18.67KB)

例1、如图,正方形的面积为1,E、F分别为AB、BD的中点,GC=1/3FC,求阴影部分的面积。

下载附件(13.26KB)

例2、如图,长方形ABCD,E为AD的中点,AF与BD、BE分别交于G和H,OE垂直于AD,交AD于E点,交AF于O点,已知AH=5,HF=3,求AG的长。

下载附件(13.49KB)

例1、如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,求四边形BGHF的面积。

下载附件(18.08KB)

例2、如图,在△ABC中,BD=2DA、CE=2EB、AF=2FC,那么△ABC的面积是阴影△GHI面积的几倍?

下载附件(17.61KB)

例3、如图,在△ABC中,点D是AC的中点,点E、F是BC的三等分点,若△ABC的面积是1,求四边形CDMF的面积。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1