脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx

上传人:b****1 文档编号:13743454 上传时间:2022-10-13 格式:DOCX 页数:20 大小:51.62KB
下载 相关 举报
脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx_第1页
第1页 / 共20页
脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx_第2页
第2页 / 共20页
脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx_第3页
第3页 / 共20页
脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx_第4页
第4页 / 共20页
脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx

《脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx(20页珍藏版)》请在冰豆网上搜索。

脂肪细胞脂质代谢对肝细胞营养感应信号的影响机制论文大学论文Word文档格式.docx

而脂肪细胞是如何影响肝脏的脂质代谢,也将是未来几年的研究方向和重点,这些研究可为探索高脂血症的发病机制及防治措施提供新的思路。

二、国内外研究现状和发展趋势(国际最新研究进展和发展趋势,国内研究现状和水平,在相关研究领域取得突破的机遇等)

目前认为,脂肪组织已不仅是能量储存器官,还具有分泌瘦素、脂联素、抵抗素等脂肪因子,调节糖、脂代谢等功能。

但是,在肥胖状态下,脂肪细胞可发生功能失调,主要表现为胰岛素抵抗,分泌功能紊乱和病理性脂肪因子分泌增多[1,2]。

然而,有关脂肪细胞功能失调的原因及其机制尚待深入探讨。

虽然,我们对脂肪细胞的能量代谢有较为深入地了解,但对脂肪细胞参与胆固醇的代谢过程及机制却知之不多。

有研究表明,胆固醇稳态对于维持脂肪细胞正常的生理功能具有重要意义。

脂肪细胞肥大,胰岛素抵抗,分泌功能紊乱,胆固醇稳态失衡可能是其中的关键机制[3]。

脂肪细胞内胆固醇稳态失衡主要表现为胞内胆固醇聚集,而细胞膜胆固醇含量降低。

有研究表明,细胞内胆固醇失稳态可能是脂肪细胞功能异常的关键所在:

用环糊精介导脂肪细胞膜胆固醇流出,模拟肥大脂肪细胞胞膜胆固醇相对减少状态,可导致细胞表现出胰岛素抵抗,分泌功能异常[4];

反之,纠正细胞胆固醇失衡,则可一定程度改善脂肪细胞的功能[5]。

但是,目前,胆固醇失稳态致细胞功能异常的机制尚不明确。

内质网应激是一种重要的细胞应激反应,过强或过长时间的激活会影响细胞的代谢及功能。

内质网是细胞内进行蛋白合成、修饰、折叠和亚基组合的重要场所,蛋白是否被折叠成正确构像有赖于内质网的功能。

当不利因素干扰内质网的功能时,未折叠或错误折叠蛋白在内质网聚集,引起非折叠蛋白反应(unfoldedproteinresponse,UPR),即促发内质网应激[6]。

游离胆固醇具有显著的细胞毒性,有研究发现,在胆固醇过度负荷的巨噬细胞,随着胆固醇转运至内质网,巨噬细胞则出现明显的内质网应激[7]。

近期已有研究证实肥胖小鼠脂肪细胞内存在增强的内质网应激,并与其胰岛素抵抗有关[8,9]。

对其他类型细胞的研究发现,内质网应激能诱导内皮细胞及巨噬细胞表达分泌IL-6、IL-8和TNF-α等炎症因子;

与此同时,在炎症因子表达分泌的调节中发挥重要作用的IKK/NF-κB通路在发生内质网应激反应时可被激活[10]。

因此,基于以上证据,我们推测:

脂肪细胞内胆固醇过度负荷,过多的胆固醇转移至内质网,触发细胞内质网应激,继而导致细胞分泌功能异常,而其中IKK/NF-κB通路可能在其中起介导作用。

脂肪因子的影响包括全身(内分泌)和局部作用(旁分泌)。

近来研究提示,内脏周围的脂肪积聚可对其临近的器官产生损害,例如,心脏、血管及肾脏的周围脂肪组织堆积能增加相应器官的损害并增加心血管病的危险[11],提示脂肪组织的作用与其旁分泌效应密切相关。

而肝脏紧邻腹部脂肪,所以腹型肥胖对肝脏的影响可能与脂肪细胞旁分泌有关。

临床中也观察到,腹型肥胖特别是合并脂肪肝的患者血清HDL-C水平降低及TG升高更突出,因此,肥胖时,脂肪细胞分泌功能紊乱,分泌增多的病理性脂肪因子对肝细胞HDL及TG代谢可产生影响。

肝脏是HDL代谢的关键器官,其代谢过程包括两大方面:

首先,肝脏合成ApoAI并在ATP结合盒转运体A1(ABCA1)作用下使ApoAI脂化形成HDL,ABCA1介导的ApoAI向HDL转化可发生在肝脏及肝脏外组织,但研究证实,选择性敲除肝脏ABCA1可使HDL-C下降80%以上[12],提示肝脏ABCA1(而不是肝外组织ABCA1)是决定体内HDL-C水平的关键。

另外,肝脏还通过高密度脂蛋白受体(B类I型清道夫受体)SR-BI摄取循环HDL中的胆固醇,促进HDL中的胆固醇向胆汁及肠道排泄。

以上两方面作用均有利于外周组织的胆固醇向体外排泄,即所谓的“胆固醇逆转运”,这也是HDL抗动脉粥样硬化的首要机制。

最近,我们通过比较正常及饮食诱导的肥胖小鼠体内胆固醇逆转运功能,结果发现在注射荷载3H-标记胆固醇的巨噬细胞后,与对照小鼠比较,肥胖小鼠血清及粪便3H-胆固醇放射活性在不同时间点均有降低,表示肥胖小鼠体内胆固醇逆转运下降。

同时,48小时粪便3H-胆固醇放射活性在两组的差异大于48小时血清3H-胆固醇放射活性在两组的差异,说明肥胖小鼠从血清到粪便的胆固醇转运受损更加严重,提示肥胖对肝脏参与的胆固醇逆转运影响更突出。

而肥胖状态下,脂肪细胞是通过何种脂肪因子,如何影响肝脏HDL代谢尚不清楚。

Wueest等人的研究发现,选择性敲除脂肪组织中的凋亡信号通路Ras基因,能减少高脂饮食诱导的细胞因子(如IL-6)升高,更重要的是显著减轻脂肪肝和明显增加肝脏对胰岛素的敏感性[13],提示高脂饮食导致的脂肪细胞凋亡通路激活是体内炎症反应和肝脏胰岛素抵抗的关键因素之一。

无独有偶,另外一项近期发表在Science的研究也证实,选择性敲除脂肪组织中的应激信号通路JNK1基因,能阻断高脂饮食诱导的脂肪组织炎症反应(IL-6升高)和肝脏的胰岛素抵抗[14],提示肝脏是脂肪组织作用的主要靶点,支持脂肪细胞与肝细胞之间存在交互作用,而IL-6是重要的介导之一。

综上所述,我们推测:

肥胖状态下,脂肪细胞可通过旁分泌脂肪因子影响肝脏HDL代谢相关蛋白的表达和对HDL胆固醇的摄取,从而影响胆固醇逆转运。

除HDL代谢外,肝脏也是TG代谢的主要场所之一。

肥胖状态下,过多的TG沉积在肝脏,致脂肪肝形成,但其分子机制尚不完全清楚。

近年来研究发现,DNA断裂因子相似蛋白(CIDE)家族是机体能量平衡及脂质代谢的重要调节因子,与代谢综合征、肥胖及脂肪肝等脂类代谢相关疾病密切相关[15]。

CIDE家族包括三个成员:

CIDE-A、CIDE-B和CIDE-C。

研究显示,敲除了CIDE-A、CIDE-B、FSP27的动物都表现出了能量释放增多,且能够抵抗饮食导致的肥胖、IR及肝脂肪变性[16]。

CIDE家族定位于内质网、脂滴和线粒体,参与甘油三酯的储存、水解以及分泌等代谢过程。

在生理情况下,肝脏主要表达CIDE-B,然而发生肝脂肪变性时,CIDE-A和CIDE-C的表达则上调。

在肝细胞中,CIDE-B基因敲除后,固醇调节元件结合蛋白(SREBP1c)的表达明显下降,同时影响该蛋白下游的多种酶类的活性,从而增强线粒体β氧化,降低了脂肪的合成[16]。

此外,CIDE-B敲除鼠分泌VLDL-TG水平减少[17]。

同样,CIDE-A或CIDE-C基因敲除可增强肝细胞的β氧化,增加胰岛素的敏感性[16,18]。

目前关于CIDE蛋白的上游调节因子的研究很有限。

有研究表明,PPAR-γ可上调CIDE-A和CIDE-C的表达[19,20],而正常的肝细胞仅表达低水平的PPAR-γ,当其发生脂肪化时,PPAR-γ水平则显著上调。

因此,除影响HDL代谢外,脂肪因子作用于肝细胞后,使肝细胞的PPAR-γ表达上调,从而升高CIDE的表达,进而通过影响其下游的信号通路促进肝细胞脂质合成、降低β氧化和胰岛素敏感性,最终导致脂肪肝。

 

参考文献

[1]GuilhermeA,VirbasiusJV,PuriV,CzechMP.Adipocytedysfunctionslinkingobesitytoinsulinresistanceandtype2diabetes.NatRevMolCellBiol,2008,9:

367-77

[2]HanauerSB.Obesityandvisceralfat:

agrowinginflammatorydisease.NatClinPractGastroenterolHepatol,2005,2:

245

[3]YuBL,ZhaoSP,HuJR.Cholesterolimbalanceinadipocytes:

apossiblemechanismofadipocytesdysfunctioninobesity.ObesRev,2010,11:

560-7

[4]LeLayS,KriefS,FarnierC,etal.Cholesterol,acellsize-dependentsignalthatregulatesglucosemetabolismandgeneexpressioninadipocytes.JBiolChem.2001;

276(20):

16904-10.

[5]HorvathEM,TackettL,McCarthyAM,etal.Antidiabetogeniceffectsofchromiummitigatehyperinsulinemia-inducedcellularinsulinresistanceviacorrectionofplasmamembranecholesterolimbalance.MolEndocrinol.2008;

22(4):

937-50

[6]HuP,HanZ,CouvillonAD,KaufmanRJ,ExtonJH.AutocrinetumornecrosisfactoralphalinksendoplasmicreticulumstresstothemembranedeathreceptorpathwaythroughIRE1alpha-mediatedNF-kappaBactivationanddown-regulationofTRAF2expression.MolCellBiol.2006;

26(8):

3071-84.

[7]Devries-SeimonT,LiY,YaoPM,StoneE,WangY,DavisRJ,FlavellR,TabasI.Cholesterol-inducedmacrophageapoptosisrequiresERstresspathwaysandengagementofthetypeAscavengerreceptor.JCellBiol.2005;

171

(1):

61-73.

[8]OzcanU,CaoQ,YilmazE,LeeAH,IwakoshiNN,OzdelenE,TuncmanG,Gö

rgü

nC,GlimcherLH,HotamisligilGS.Endoplasmicreticulumstresslinksobesity,insulinaction,andtype2diabetes.Science.2004;

306(5695):

457-61.

[9]GregorMF,HotamisligilGS.AdipocyteBiology.Adipocytestress:

theendoplasmicreticulumandm

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1