机器人的组成系统Word文件下载.docx

上传人:b****3 文档编号:13556188 上传时间:2022-10-11 格式:DOCX 页数:12 大小:769.97KB
下载 相关 举报
机器人的组成系统Word文件下载.docx_第1页
第1页 / 共12页
机器人的组成系统Word文件下载.docx_第2页
第2页 / 共12页
机器人的组成系统Word文件下载.docx_第3页
第3页 / 共12页
机器人的组成系统Word文件下载.docx_第4页
第4页 / 共12页
机器人的组成系统Word文件下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

机器人的组成系统Word文件下载.docx

《机器人的组成系统Word文件下载.docx》由会员分享,可在线阅读,更多相关《机器人的组成系统Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。

机器人的组成系统Word文件下载.docx

示教输入程序的工业机器人称为示教再现型工业机器人。

几个问题:

(1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型?

(2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆?

(3)能不能控制机器人中每一个电机的输出功率或扭矩?

(4)机器人每一个关节从驱动电机到执行机构的传递效率有没有?

二.工业机器人的主体

机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。

共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。

机器人采用电机驱动,电机分为步进电机或直流伺服电机。

直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。

各部件组成和功能描述如下:

(1)基座:

基座是机器人的基础部分,起支撑作用。

整个执行机构和驱动装置都安装在基座。

(2)腰部:

腰部是机器人手臂的支撑部分,腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。

(3)大臂:

大臂和传动部件

(4)小臂:

小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运动的步进电机。

(5)手腕部件:

手腕壳体、传动齿轮和传动轴、机械接口等。

(6)末端执行器:

根据抓取物体的形状、材质等选择合理的结构。

目前,在工业机器人中广泛采用的机械传动单元是减速器,与通用减速器相比,机器人关节减速器要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。

常用的减速器主要有:

RV减速器和谐波减速器。

RV减速器一般用在腰关节、肩关节和肘关节等重载位置处,而谐波减速器用于手腕的三个关节等轻载位置处。

(1)谐波减速器

谐波减速器由固定的刚性内齿轮、一个工作时可产生径向弹性变形并带有外齿的柔轮和一个装在柔轮内部、呈椭圆形、外圈带有柔性滚动轴承的波发生器等3个基本构件组成。

当波发生器转入柔轮后,迫使柔轮的剖面由原先的圆形变为椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开,周长上其他区段的齿处于啮合和脱离的过渡状态。

(2)RV减速器

与谐波减速器相比,RV减速器具有较高的疲劳强度和刚度以及较长的寿命,而且回差精度稳定,不想谐波传动,随着使用时间的增长,运动精度就会显著降低,故高精度机器人传动多采用RV减速器,且有逐渐取代谐波减速器的趋势。

RV减速器是由第一级渐开线圆柱齿轮行星减速机构和第二级摆线针轮行星减速机构组成,是一封闭差动轮系。

目前,在工业机器人中常用的驱动电机是交流伺服电机。

交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

交流伺服电机具有较强的过载能力,具有速度过载和转矩过载能力,其最大转矩可达额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。

电机的输出扭矩与功率的关系:

T=9550P/n。

T,扭矩,Nm;

P,功率,KW;

n,转速,r/min;

9550是系数。

扭矩、功率、转速之间,有关系。

三.工业机器人的示教器

示教器也称示教编程器或示教盒,主要由液晶屏幕和操作按键组成,可由操作者手持移动。

它是机器人的人机交互接口,机器人的所有操作基本上都是通过示教器完成的,如点动机器人,编写、测试和运行机器人程序,设定、查阅机器人状态设置和位置等。

四.工业机器人的技术指标

机器人的技术指标反映了机器人的适用范围和工作性能,是选择、使用机器人必须考虑的问题。

(1)最大负载:

作用于机器人手腕末端,且不会使机器人性能降低的最大载荷

(2)定位精度:

又称绝对定位精度,是指机器人末端执行器实际到达位置与目标位置之间的差异。

(3)重复定位精度:

指机器人重复到达某一目标位置的差异程度;

或在相同的位置指令下,机器人连续重复若干次其位置的分散情况。

一般而言,工业机器人的绝对定位精度要比重复定位精度低一到两个数量级,其原因是未考虑机器人本体的制造误差、工件加工误差及工件定位误差情况下使用机器人的运动学模型来确定机器人末端执行器的位置。

(4)最大工作速度。

在各轴联动情况下,机器人手腕中心所能达到的最大线速度。

最大工作速度越高,生产效率就越高。

五.工业机器人的控制系统

机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。

机器人控制器是根据指令以及传感信息控制机器人完成一定动作或作业任务的装置。

工业机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。

具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。

其基本功能如下:

(1)示教功能。

分为在线示教和离线示教两种方式。

(2)记忆功能。

存储作业顺序、运动路径和方式及与生产工艺有关的信息等。

(3)与外围设备联系功能。

包括输入/输出接口、通信接口、网络接口等。

(4)传感器接口。

位置检测、视觉、触觉、力觉等。

(5)故障诊断安全保护功能。

运行时的状态监视、故障状态下的安全保护和自诊断。

其关键技术包括:

(1)开放性模块化的控制系统体系结构:

采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。

机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。

机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。

(2)模块化层次化的控制器软件系统:

软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。

整个控制器软件系统分为三个层次:

硬件驱动层、核心层和应用层。

三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。

(3)机器人的故障诊断与安全维护技术:

通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。

(4)网络化机器人控制器技术:

当前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。

控制器上具有串口、现场总线及以太网的联网功能。

可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。

根据计算机结构、控制方式和控制算法的处理方法,机器人控制器又可分为集中式控制和分布式控制。

(1)集中式控制器。

利用一台微型计算机实现系统的全部控制功能。

其优点是硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的硬件扩展方便。

其缺点是灵活性、可靠性、实时性较差。

(2)分布式控制器。

主要思想是“分散控制,集中管理”,分布式系统常采用两级控制方式,由上位机和下位机组成。

上位机(机器人主控制器)负责整个系统管理以及运动学计算、轨迹规划等,下位机由多CPU组成,每个CPU控制一个关节运动。

上、下位机通过通信总线相互协调工作。

其优点是系统灵活性好、可靠性提高、响应时间短,有利于系统功能的并行执行。

工业机器人的控制系统需要由相应的硬件和软件组成,硬件主要由传感装置、控制装置及关节伺服驱动部分组成,软件包括运动轨迹规划算法和关节伺服控制算法与相应的工作程序。

传感装置分为内部传感器和外部传感器,内部传感器主要用于检测工业机器人内部的各关节的位置、速度和加速度等,而外部传感器是可以使工业机器人感知工作环境和工作对象状态的视觉、力觉、触觉、听觉、滑觉、接近觉、温度觉等传感器。

控制装置用于处理各种感觉信息,执行控制软件,产生控制指令。

关节伺服驱动部分主要根据控制装置的指令,按作业任务的要求驱动各关节运动。

六.工业机器人的运动轨迹与位置控制

机器人的作业实质是控制机器人末端执行器的位姿,以实现点位运动或连续路径运。

(1)点位运动(PTP)。

点位运动只关心机器人末端执行器运动的起点和目标点位姿,而不关心这两点之间的运动轨迹。

(2)连续路径运动(CP)。

连续路径运动不仅关系机器人末端执行器达到目标点的精度,而且必须保证机器人能沿所期望的轨迹在一定精度范围内重复运动。

机器人连续路径运动的实现是以点位运动为基础,通过在相邻两点之间采用满足精度要求的直线或圆弧轨迹插补运算即可实现轨迹的连续化。

机器人再现时,主控制器(上位机)从存储器中逐点取出各示教点空间位姿坐标值,通过对其进行直线或圆弧插补运算,生成相应路径规划,然后把各插补点的位姿坐标值通过运动学逆解运算换成关节角度值,分送机器人各关节或关节控制器。

工业机器人控制方式有不同的分类,如按被控对象不同可分为位置控制、速度控制、加速度控制、力控制、力矩控制、力和位置混合控制等,而位置控制是工业机器人的基本控制任务。

 

问题:

1.要求机器人系统模块化,我们可以给机器人系统中各模块发送指令,并获取各模块的输出。

机器人系统部分非核心模块应该可以关闭或打开,被关闭的模块即使接受到指令也应处非活跃状态。

2.我们可以写自己的模块,并通过个人编写的模块调用系统模块,实现对系统模块的控制。

3.机器人路径规划一般给定起始点和终止点,然后通过插补运算得到路径,但我希望能将路径规划模块化,我可以给路径规划模块实时发送终止点指令,获得规划路径。

将路径送入运动学逆解求解模块获取关节的转动角度,将该转动角度与期望速度和加速度(速度、加速度可以实时调整)相结合控制机器人的操作空间动力学模型。

在必要情况下,在未到达终止点时,若终止点发生变化,可以从当前点重新规划到新终止点的路径。

4.将机器人的坐标系(关节坐标系、全局坐标系、工件坐标系等)模块化,可以通过指令进行坐标系转换。

5.将机器人末端位置、速度、加速度和每一个关节位置、速度、加速度模块化,我们可以调取机器人末端及关节信息,并可以直接对末端及关节位置、速度、加速度发送指令以便于进行控制。

6.机器人中的每一个关节是否都有制动器?

7.机器人末端执行器更换时如何进行标定?

8.机器人误差补偿模块化。

9.机器人本体的三维建模

10.公司开发的焊接机器人有没有研究在障碍物未知情况下的避障规划?

有没有研究碰撞检测方面的工作?

11.把一个物体随

1.工业机器人的轨迹规划

1.1机器人规划的基本概念

所谓机器人的规划(P1anning),指的是——机器人根据自身的任务,求得完成这一任务的解决方案的过程。

这里所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 交通运输

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1