长方体正方体表面积练习题1Word文件下载.docx

上传人:b****1 文档编号:13532452 上传时间:2022-10-11 格式:DOCX 页数:9 大小:19.58KB
下载 相关 举报
长方体正方体表面积练习题1Word文件下载.docx_第1页
第1页 / 共9页
长方体正方体表面积练习题1Word文件下载.docx_第2页
第2页 / 共9页
长方体正方体表面积练习题1Word文件下载.docx_第3页
第3页 / 共9页
长方体正方体表面积练习题1Word文件下载.docx_第4页
第4页 / 共9页
长方体正方体表面积练习题1Word文件下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

长方体正方体表面积练习题1Word文件下载.docx

《长方体正方体表面积练习题1Word文件下载.docx》由会员分享,可在线阅读,更多相关《长方体正方体表面积练习题1Word文件下载.docx(9页珍藏版)》请在冰豆网上搜索。

长方体正方体表面积练习题1Word文件下载.docx

最小是多少平方米?

8、把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是多少平方厘米?

9.用三个棱长为8厘米的正方体木块拼成一个长方体,长方体的表面积是多少?

棱长之和是多少?

10、在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?

做12节这样的通风管呢?

11、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?

12、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?

13、一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少?

14、一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积?

3、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的表面积。

15、一个长方体的12条棱长总和是64厘米,侧面是一个周长为24厘米的长方形,它的长是多少?

16、把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。

17、一个长方体的木块,截成两个完全相等的正方体。

两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?

18、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是多少平方厘米?

6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。

扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?

7、一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是(  )升

8、有大、中、小三个长方体水池,它们的口都是正方形分别是5分米、3分米、2分米,现在把两块石头分别放入中、小水池内,这两个水池的水面分别升高6厘米,如果这两块石头都沉入大水池中,那么大水池的水面将升高多少厘米?

9、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?

10、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?

如果每4平方米需要水泥1千克,一共要水泥多少千克?

11、一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?

12、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?

13、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。

做这个油箱需要多少平方分米的铁皮?

如果每升汽油5.5元钱.这个油箱装满汽油共需要多少钱?

练习一:

1、把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原俩正方体的表面积是多少平方厘米?

思路:

把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了4个正方形的面积,每块正方形的面积是50÷

4=12.5(平方厘米),那么正方体的表面积是12.5×

6=75(平方厘米)

2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了46平方厘米,而长是原来长方体的2倍。

如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?

3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?

4、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积会减少多少平方分米?

练习二:

1、长方体不同的三个面的面积分别为10、15和6平方厘米。

这个长方体的体积是多少立方厘米?

长方体不同的三个面的面积分别为长×

宽、长×

高和宽×

高。

因此,15×

10×

6=(长×

宽×

高)×

(长×

高),而15×

6=900=30×

30。

所以,这个长方体的体积是30立方厘米。

2、一个长方体、不同的三个面的面积分别为35、15和21平方厘米,且长宽高都是素数。

3、一个长方体,前面和上面的面积之和是209立方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

4、长方体不同的三个面的面积分别为25、18和8平方厘米。

练习三:

1、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水,如果在水中沉入一个棱长为30厘米的正方体铁块,那么水箱中水深多少分米?

铁块的体积为9立方分米,沉入水中后,水上升的体积就是9立方分米,用这个体积除以水箱底面积就能得到水上升的高度。

则30厘米=3分米;

(15×

12)+10=10.15(分米)

2、有一个长方体容器,从里面量长5分米,宽4分米,高6分米,里面注入水,水深3分米。

如果把一块长2分米的正方体铁块浸入水中,水面上升了多少分米?

3、有一个小金鱼缸,长4分米,宽3分米,水深2分米。

把一个小块假山石浸入水中后,水面上升了0.8分米。

这块假山石的体积是多少立方分米?

4、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。

现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?

练习四:

1、将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

因为正方体的每一个面的面积相等,所以这三个正方体的每一个面面积是9、16、25平方厘米。

故三个正方体的棱长分别是3、4、5厘米。

则大正方体的体积只需将三个正方体的体积相加即可。

2、有三个正方体铁块,它们的表面积分别为24、54和294平方厘米。

现将三块铁熔成一个大正方体(不计损耗),求这个大正方体的体积。

3、将表面积分别是216和384平方厘米的两个正方体熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

4、把8块棱长是1分米的正方体铁块熔成一个大正方体,求这个大正方体的表面积是多少平方分米?

练习五:

1、一个长方体容器的底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长15厘米的长方体铁块。

这时容器里的水深0.5米。

如果把铁块取出,容器里的水深是多少厘米?

这里告诉的铁块高度是一个无用的条件,首先计算使水面升高的铁块的体积是:

15×

(0.5×

100)=11250(立方厘米),这时可计算铁块使水面升高的高度:

11250÷

(60×

60)=3.125(厘米)。

则取出铁块后水的高度为50-3.125=46.875(厘米)。

2、有一块棱长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。

取出铁块后,水面下降了0.5厘米。

这个长方体容器的底面积是多少平方厘米?

3、有一个长方体冰箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。

这时水面高多少厘米?

4、有大中小三个长方形水池,它们的池口都是正方形,边长分别为6分米,3分米和2分米。

现在把两堆碎石分别沉入中小两个水池内。

这两个水池的水面分别升高了6厘米和4厘米。

如果把这两堆碎石都沉入大池内,那么,大池的水面将升高多少厘米?

(结果保留整数)

练习六:

1、有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?

水的形状在变化,而水的体积没有变化。

30×

20×

(20×

10)=18(厘米)

2、有两个长方体水缸,甲缸长3分米,宽和高都是2分米。

乙缸长4分米,宽2分米,里面的水深1.5分米。

现把乙缸的水倒进甲缸,水深多少分米?

3、有一块边长2分米的正方形铁块,现把它锻造成一根长方体,这个长方体的截面是一个长4厘米,宽2厘米的长方形,求它的长。

4、你能计算第一题中让中面作为底面的水的高度吗?

练习七:

1、一个长方体容器内装满水,现在有大中小三个铁球,第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中。

已知每次从容器中溢出的水量情况是:

第二次是第一次的3倍,第三次是第一次的2.5倍。

问:

大球的体积是小球的几倍?

假设小球的体积是1,则第一次溢出的水的体积也是1,根据第二次溢出的水是第一次的3倍,可知第二次溢出的水是3,因为取出了小球,则中球的体积为4。

根据第三次溢出的水是第一次的2.5倍,可知第三次溢出的水为2.5,因为取出了中球,则大球的体积为2.5+4-1=5.5。

不难计算大球的体积是小球的5.5倍。

2、有一个正方形容器,边长是25厘米,里面注满了水,有一根长50厘米,横截面是12平方厘米的长方体铁棒,现将铁棒垂直插入水中。

会溢出多少立方厘米的水?

3、有两个水池,甲水池长8分米,宽6分米,水深3分米,乙水池空着,它长、宽高都是4分米。

现将从甲水池中抽出一部分水到乙水池,使两水池的水面同样高。

求水面的高度。

4、一个长方体容器,底面是一个边长60厘米的正方形。

容器里直立着一个高1米,底面边长15厘米的长方体铁块,这时容器里的水深0.5米。

现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?

练习八:

1、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米?

把棱长6厘米的正方体锯成棱长为2厘米的正方体,每锯一次的表面积可增加6×

2=72(平方厘米),一共要锯6次,则表面积增加72×

6=432(平方厘米)。

2、把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的面积之和少多少平方厘米?

3、有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?

4、把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样大的小长方体,没有涂颜色的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1