信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt

上传人:wj 文档编号:13273868 上传时间:2022-10-09 格式:PPT 页数:83 大小:1.04MB
下载 相关 举报
信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt_第1页
第1页 / 共83页
信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt_第2页
第2页 / 共83页
信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt_第3页
第3页 / 共83页
信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt_第4页
第4页 / 共83页
信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt_第5页
第5页 / 共83页
点击查看更多>>
下载资源
资源描述

信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt

《信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt》由会员分享,可在线阅读,更多相关《信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt(83页珍藏版)》请在冰豆网上搜索。

信号检测估计_第三章-信号检测的基本理论PPT文件格式下载.ppt

,1.二元信号检测理论模型,基本检测理论模型,二元信号检测应用:

(1)二元数字通信,信源符号0和1;

(2)雷达系统中,检测有或无目标;

第三章信号检测的基本理论3.2假设检测的基本概念,第三章信号检测的基本理论3.2假设检测的基本概念,下面以二元数字通信为例来说明信号检测过程。

信源说明:

考虑二元信号的检测问题时,信源仅发出二元信号。

当假设H0为真时,信源输出信号为-A,当假设H1为真时,信源输出信号为+A。

+A、-A均为确定信号,n为随机信号,因此x也为随机信号,仅仅是均值发生偏移,即有:

转移概率机构说明:

如果信道噪声n服从N(0,n2),概率转移结构使观测空间中的随机观测信号为(x|Hj)(j=0,1)。

这样在两种假设情况下,观测信号的数学模型为,第三章信号检测的基本理论3.2假设检测的基本概念,x,显然,图中检测模型的观测空间由一维随机观测信号组成。

一维随机观测信号特征:

x是一维变量。

第三章信号检测的基本理论3.2假设检测的基本概念,说明:

二元信号检测模型的观测空间也可以由多维随机观测信号组成。

二元信号检测模型中多维随机观测信号的观测空间形成:

主讲:

刘颖2006年秋,对于信源的任何一个输出,让概率转移机构依次转移N次,则相当于观测信号的模型为:

即进行了N次观测,构成N维随机观测矢量,其对应的观测空间就是N维的,N为有限值。

基本检测理论模型,观测空间R:

在信源不同输出下,观测空间R是由概率转移机构所形成的可能观测的集合。

观测量可以是一维的,也可以是N维矢量。

两种信号状态下N维观测信号矢量的N维联合概率密度为。

如果没有噪声的干扰,信源输出的某一种确知信号将映射到观测空间中的某一点,但在噪声干扰的情况下,他将以一定的概率映射到整个观测空间,观测空间某点的概率为。

第三章信号检测的基本理论3.2假设检测的基本概念,基本检测理论模型,判决准则:

观测信号落入观测空间后,就可以用来推断哪一个假设成立是合理的,即判决信号属于哪种状态。

为此需要建立一个判决准则,判决观测空间的每一个点对应着一个相应的假设Hi(i=0,1),例如:

在二元信号检测中,把整个观测空间R划分为R0和R1两个子空间,称为判决域。

2.M元信号检测理论模型,M元信号检测中,信源有M种可能的输出信号状态,分别记为Hj,(j=0,1,2,M-1)。

在噪声的干扰背景中,信源的每种输出信号经过概率转移机构生成随机观测量。

第三章信号检测的基本理论3.2假设检测的基本概念,第三章信号检测的基本理论3.2假设检测的基本概念,3.2.2统计检测的结果和判决概率,信号统计检测就是统计学中的假设检验。

给信号的每种可能状态一个假设Hj(j=0,1,2,M),检验就是信号检测系统对信号属于哪个状态的统计判决。

一维观测信号是N维观测矢量信号的特例,因此下面按N维观测矢量信号来讨论信号的统计检测问题,也就是假设检验结果和判决概率问题。

第三章信号检测的基本理论3.2假设检测的基本概念,1.二元信号的情况,二元信号的判决结果。

对于二元假设检验,判决结果必然是下面四中情况之一:

(1)假设H0为真,判决假设H0成立,记为(H0|H0);

正确判断

(2)假设H0为真,判决假设H1成立,记为(H1|H0);

错误判断(3)假设H1为真,判决假设H0成立,记为(H0|H1);

错误判断(4)假设H1为真,判决假设H1成立,记为(H1|H1);

正确判断,第三章信号检测的基本理论3.2假设检测的基本概念,P(Hi|Hj)含义:

在假设Hj为真的条件下,判决假设Hi成立的概率。

假设观测量落在Ri域判决Hi成立,则有,二元信号的判决概率。

第三章信号检测的基本理论3.2假设检测的基本概念,x,0,P(n),+A,x,P(x|H1),-A,x,P(x|H0),举例说明,当N=1时。

第三章信号检测的基本理论3.2假设检测的基本概念,x,+A,P(x|H1),-A,P(x|H0),P(H1|H0),x0,R1,R0,P(H0|H1),二元信号检测的判决域划分与判决概率,第三章信号检测的基本理论3.2假设检测的基本概念,2.M元信号的情况,P(Hi|Hj)含义:

假设观测量落在Ri域判决Hi成立,则有,显然将有M2种判决结果,其中只有M种判决是正确的。

小结:

为了获得某种意义上的最佳检测结果,需正确划分观测空间R中各个判决域Ri(i=0,1,2,M-1)。

问题:

需要寻求最佳检测准则,获得最佳检测结果。

第三章信号检测的基本理论3.2假设检测的基本概念,常用的信号检测准则,贝叶斯准则(Bayes)极小化极大准则(minimax)奈曼-皮尔逊准则(Neymann-Pearson),3.3贝叶斯准则(BayesCriterion),贝叶斯准则:

就是在假设Hj的先验概率P(Hj)已知,各种判决代价因子Cij给定的情况下,使平均代价C最小的准则。

1.概念代价因子Cij:

表示假设Hj为真时,判决假设Hi成立所付出的代价。

约束条件C10C00,C01C11。

第三章信号检测的基本理论3.3贝叶斯准则,2.平均代价C的表达式,假设Hj为真时判决所付出的条件平均代价为,若Hj为真的概率P(Hj)已知,则判决所付出的总平均代价(也称为平均风险)为,整理得:

固定平均代价,q(x),第三章信号检测的基本理论3.3贝叶斯准则,根据Bayes准则,应使C最小。

判决域划分:

在R0域内,q(x)0.,Bayes判决准则:

即LRT,其中:

(x)称为似然比函数,称为似然比检测门限。

说明:

似然比检验(LRT:

likelihoodRatioTest)是似然比函数(x)于与检测门限进行比较,(x)是一个依赖于观测量x的函数,因此是一个检验统计量。

第三章信号检测的基本理论3.3贝叶斯准则,第三章信号检测的基本理论3.3贝叶斯准则,简化形式:

如果似然函数含有指数形式,可以简化判决准则,即简化的贝叶斯准则为,似然判决器,(x)计算器,判决器,xk,第三章信号检测的基本理论3.3贝叶斯准则,对数似然判决器,ln(x)计算器,判决器,xk,第三章信号检测的基本理论3.3贝叶斯准则,例题:

在二元数字通信系统中,假设为H1时,信源输出为正电压A,假设为H0时,信源输出为零电平。

信号在通信信道传输过程中叠加了高斯噪声n(t);

每种信源的持续时间为T,在接收端对接收到的信号x(t)在T时间内进行N次独立采样,样本为xk(k=1,2,N)。

已知噪声样本nk是均值为零、方差为n2的高斯噪声。

(1)试建立信号检测系统的信号模型;

(2)若似然检测门限已知,确定似然比检验的判决表达式;

(3)计算判决概率P(H1|H0)和P(H1|H1)。

第三章信号检测的基本理论3.3贝叶斯准则,解:

(1)接收信号模型为:

解:

在(0,T)内进行N次独立采样后,接收信号模型为:

其中xk之间相互独立。

第三章信号检测的基本理论3.3贝叶斯准则,

(2)已知,在两种假设情况下,似然函数为:

由于N次采样的样本xk之间是独立同分布(iid)的,所以,第三章信号检测的基本理论3.3贝叶斯准则,这样,似然比函数为,似然比函数检验(LRT)为,第三章信号检测的基本理论3.3贝叶斯准则,取对数,进一步整理得,(3)检验统计量是N个信号的平均值,它是xk(k=1,2,N)的函数,是个随机变量。

由于N次采样的样本xk之间是独立同分布(iid)的,因此l(x)在两种假设情况下均服从高斯分布,均值和方差计算过程如下。

第三章信号检测的基本理论3.3贝叶斯准则,假设H0情况下,均值和方差分别为:

假设H1情况下,同样的方法计算均值和方差为:

第三章信号检测的基本理论3.3贝叶斯准则,用l表示l(x),有,根据判决准则,,第三章信号检测的基本理论3.3贝叶斯准则,解毕。

第三章信号检测的基本理论3.3贝叶斯准则,例题:

设二元假设检验的观测信号模型为,其中n为均值为零,方差为0.5的高斯观测噪声。

若两种假设是等先验概率的,代价因子分别为,试求最佳(贝叶斯)判决表示式和平均代价C。

似然比检测门限为,第三章信号检测的基本理论3.3贝叶斯准则,Bayes判决表示式为,两边取对数,得,显然似然比函数服从高斯分布,令l(x)=x在两种假设下,有,第三章信号检测的基本理论3.3贝叶斯准则,说明:

如果调整检测门限偏离了-0.1733,则计算出的C均大于1.8269,这从侧面验证了贝叶斯准则的却能使平均代价最小。

第三章信号检测的基本理论,3.4派生贝叶斯准则,概念:

在对各假设的先验概率P(Hj)和各种判决的代价因子Cij进行约束的条件下,将会得到它的派生准则。

本节主要讨论二元信号情况下,贝叶斯派生的几种准则。

1.最小平均错误概率准则,派生过程:

当C00=C11=0,C10=C01=1时,平均代价为,第三章信号检测的基本理论3.4派生贝叶斯准则,最小平均错误概率准则:

使平均错误概率最小的准则。

(minimummeanprobabilityoferrorcriterion),类似于贝叶斯准则的分析方法,Pe表示为,为了使Pe最小,将所有满足q(x)0的x划归R0域,判决假设H0成立。

q(x),这样,所有满足q(x)0的划归R1域,判决假设H1成立。

此时,LRT(似然比判决)式为,LRT式的简化形式为,第三章信号检测的基本理论3.4派生贝叶斯准则,2.最大似然准则(maximumlikelihoodcriterion),派生过程:

当C00=C11=0,C10=C01=1,P(H0)=P(H1)=0.5,LRT为,说明:

最小平均错误概率准则和最大似然准则都是贝叶斯准则特例。

第三章信号检测的基本理论3.4派生贝叶斯准则,第三章信号检测的基本理论3.4派生贝叶斯准则,例题3.4-1:

在OOK通信系统中,两个假设下的观测信号模型为,其中,观测噪声nN(0,n2);

信号A是常数,且A0。

若两个假设的先验概率P(Hj)相等,代价因子C00=C11=0,C10=C01=1,采用最小平均错误概率准则,确定判决表示式,并求平均错误概率。

在两个假设下,观测量x的概率密度函数分别为,第三章信号检测的基本理论3.4派生贝叶斯准则,因为C00=C11=0,C10=C01=1,P(H0)=P(H1)=0.5,经过化简整理得,此时检验统计量l(x)=x。

有,第三章信号检测的基本理论3.4派生贝叶斯准则,根据检测准则,判决门限为A/2,所以两种错误检测概率为:

第三章信号检测的基本理论3.4派生贝叶斯准则,这样平均错误概率为,说明:

显然信

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1