弹性波动力学重点复习题Word文档下载推荐.doc

上传人:b****1 文档编号:13083788 上传时间:2022-10-04 格式:DOC 页数:41 大小:1.31MB
下载 相关 举报
弹性波动力学重点复习题Word文档下载推荐.doc_第1页
第1页 / 共41页
弹性波动力学重点复习题Word文档下载推荐.doc_第2页
第2页 / 共41页
弹性波动力学重点复习题Word文档下载推荐.doc_第3页
第3页 / 共41页
弹性波动力学重点复习题Word文档下载推荐.doc_第4页
第4页 / 共41页
弹性波动力学重点复习题Word文档下载推荐.doc_第5页
第5页 / 共41页
点击查看更多>>
下载资源
资源描述

弹性波动力学重点复习题Word文档下载推荐.doc

《弹性波动力学重点复习题Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《弹性波动力学重点复习题Word文档下载推荐.doc(41页珍藏版)》请在冰豆网上搜索。

弹性波动力学重点复习题Word文档下载推荐.doc

答:

正应变是弹性体沿坐标方向的相对伸缩量。

切应变表示弹性体扭转或体积元侧面角错动。

相对体变表示弹性体体积的相对变化。

4.什么是旋转角位移?

写出它与(线)位移的关系式。

旋转角位移为体积元侧面积对角线的转动角度。

5.试解释应变张量和旋转张量中各分量的物理含义。

分别表示弹性体沿x、y、z方向的相对伸长量;

分别表示平行于坐标面、和xoz的侧面积的角错动量。

分别表示与坐标面、xoz和平行的侧面积对角线围绕、y和轴的旋转角。

11.设弹性体内的位移场为,其中都是与1相比很小的数,试求应变张量、转动角位移矢量及体积膨胀率(相对体变)。

解:

应变张量

体积膨胀率

12.已知弹性体内的位移场为,其中为已知常数,试求应变张量和旋转张量,并阐述此结果反映什么物理现象。

反映了该弹性体没有发生体积及形状的变化,只是绕z轴旋转了一个角度。

6.什么是应力、正应力、切应力、应力张量?

作用于单位截面积上的内力,称为应力。

应力作用方向与作用截面垂直,称为正应力;

应力作用方向在作用截面上,称为切应力。

三个相互正交的坐标面上应力矢量共同构成了应力张量。

记为。

14.已知弹性体内一点P处的应力张量由矩阵给出。

试求过点P外法线方向为u=2i-2j+k的面元上的应力矢量。

外法线单位矢量为

由得

则:

8.杨氏模量、泊松比、剪切模量、体变模量各表示了什么物理含义?

(1)杨氏模量E,是正应力与正应变的比例系数;

(2)切变模量,是切应力与切应变的比例系数;

(3)拉梅系数,,反映正应力与正应变的比例系数的另一种形式;

(4)压缩模量或体变模量K,表示单元体在胀缩应变状态下,相对体变与周围压力间的比例系数;

(5)泊松比,表示物体横向应变与纵向应变的比例系数,故也称横向形变系数。

19.已知一各向同性线性弹性体的弹性模量为:

杨氏模量E=210Gpa,泊松比为0.28;

其中一点处的应变分量为,其中a=,试求拉梅常数,并写出该点上的应力张量。

体应变

则由应力应变关系

1.已知一弹性介质内,位移场为,其中试求点P(0,2,-4)处的应变张量、转动向量、体应变以及该点处的应力分量。

解:

由题可知在P(0,2,-4)点

则应变张量为或

由转动向量

体应变

由应力应变关系有

20.将代入用下标记号表示的运动微分方程中,化为矢量方程,并用梯度算子表示。

由可知

代入运动微分方程

得:

将各式分别乘以单位向量,相加,得:

第三章复习思考题

3.写出纵波和横波速度的表达式,分析它们之间的大小关系。

由于,因此,即,可见纵波速度大于横波速度。

4.什么叫泊松体?

泊松体的拉梅常数、纵横波速度、泊松比各有什么特点?

,或者,具有这种性质的物体称为泊松体。

对泊松体而言,。

14.已知某弹性介质中的P波速度为3600m/s,S波速度1950m/s,求该介质的泊松比。

15.已知弹性介质中杨氏模量为E,泊松比为,求介质的P波速度和S波速度。

6.简述地震波在弹性介质中传播的基本规律。

惠更斯(Huygens)原理:

任意时刻波前面上的每一点都可以看作是一个新的波源(子波源),由它产生二次扰动,形成新的波前,而以后的波前位置可以认为是该时刻子波前的包络线。

由波前面各点所形成的新扰动(二次扰动)在观测点上相互干涉叠加,其叠加结果是在该点观测到的总扰动。

斯奈尔(Snell)定律:

反射波满足反射定律,而透射波满足折射定律(地震学中称透射定律),地震波也遵循这个规律,统称为斯奈尔定律。

在界面上,入射波、反射波和透射波的值相等,称为射线参数。

7.写出周期、频率、波长、波数、速度各量之间的关系式。

10.简述非均匀波的主要特点。

非均匀波的振幅在空间是变化的,随着空间坐标在变化。

不均匀平面波其等相位面与等振幅面互相垂直。

16.已知介质1的P波速度为,介质2的P波速度为,有一平面简谐P波以入射角自介质1入射到两介质的分界面上,已知入射波的振幅为,频率为30Hz,反射P波和透射P波的振幅分别为和,试写出这三个波的波函数表达式。

临界角,入射角小于临界角。

反射角等于入射角,根据透射定律,透射角。

平面简谐波函数,x轴向右,z轴向下

入射波:

反射波:

透射波:

17.已知一简谐P波的波函数为,试求以下问题:

(1)设x轴向右,z轴向下,请用一经过原点的射线画出此波的传播方向,并标明角度。

(2)这个波的圆频率和圆波数各是多少?

在x方向和z方向上的视波数各是多少?

圆频率

在x方向和z方向上的视波数

圆波数或者

(3)这个波的真实传播速度、在x方向和z方向上的视速度各是多少?

求解得波的真实传播速度:

在x方向和z方向上的视速度、

11.球面波、柱面波与平面波的本质区别在哪里?

试解释球面扩散因子和柱面波扩散因子的物理含义。

平面波在其传播过程中波形及其振幅都不变化,而球面波的振幅随传播距离r的增大而衰减1/r,并且球面波在其传播过程中波形逐渐改变。

远离震源时,柱面波的振幅随r增大而衰减,与成正比。

球面扩散因子:

表示波远离震源向外传播,其振幅不断衰减,且与到震源的距离成反比。

柱面波扩散因子:

表示波远离震源向外传播,其振幅不断衰减,且与成反比。

第四章复习思考题

1.什么是机械能密度?

什么是能流密度?

写出能流密度和机械能密度的关系式,并解释其物理意义。

单位体积物体所具有的机械能叫机械能密度。

能流密度:

单位时间内通过与能量传播方向垂直的单位截面积的机械能。

表明了单位体积的体积元内机械能在单位时间内的减少量等于通过其表面积的机械能流失量。

2.写出能流密度与应力张量和位移矢量的关系。

写出简谐波强度的表达式。

14.一平面波的位移位为,求应变张量分量、应力张量分量、能流密度矢量及波的强度分布。

可知

能流密度矢量

波的强度分布

3.常见的平面极化波有哪几种?

什么叫转换波?

什么时候会产生转换波?

常见的平面极化波有纵波、SV波(垂直极化横波)、SH波(水平极化横波)。

同入射波极化类型不同的波称为转换波(如入射波为纵波,则有转换反射横波和转换透射横波)。

转换波的产生是由于入射波倾斜地作用在分界面上,它可分解为垂直于界面的力和切向力两部分,导致体应变和切应变,则相应有P波和SV波产生。

转换波的能量与入射角有关,垂直入射时不能形成转换波;

只有入射角达到一定程度时,才有足够能量的转换波被记录下来。

6.Knott方程和Zoeppritz方程各表达了什么含义?

它们之间的关系如何?

Knott方程表示以位移位振幅比表示的P波入射时的P波反射系数、SV波反射系数、P波透射系数和SV波透射系数的表达式。

求解该方程,可以得到以位移位振幅比表示的纵横波的反射系数及纵横波的透射系数。

同时,也是用位移位振幅比表示的入射纵波和各反射波或透射波的能量分配关系。

可以看出,它们除了同入射角有关外,还同上下介质的速度和密度参数的比值有关。

Zoeppritz方程表示以位移振幅比表示的P波入射时的P波反射系数、SV波反射系数、P波透射系数和SV波透射系数。

7.写出平面P波垂直入射到弹性界面上时的反射透射系数表达式,并说明其主要特点。

(1)平面P波垂直入射到弹性界面上时,将产生反射P波和透射P波。

为了形成反射波,分界面两侧介质波阻抗必须存在着差异,。

波阻抗差异大,反射系数大,界面反射波强;

相反,波阻抗差异小,反射系数小,界面反射波弱。

(2)当波在波阻抗大的分界面()反射时,反射系数为正,这意味着反射波相位与入射波相位相同。

相反,当波入射到波阻抗小的分界面()时,反射系数为负值。

这时反射波相对入射波有相位差,称为“半波损失”现象。

(3)平面P波垂直入射到弹性界面上时,在分界面另一侧产生的透射波,总是和入射波同相位。

8.什么叫透射损失?

写出其表达式。

表示波从不同的方向穿过同一界面一个来回时振幅的变化,称为界面的“透射损失”。

9.证明平面P波垂直入射到弹性界面上时满足能量守恒关系。

证:

=0,

入射P波的能量:

反射P波的能量:

透射P波的能量:

把代入能量计算式

所以平面P波垂直入射到弹性界面上时满足能量守恒关系。

第五章复习思考题

1.试解释频散的概念和相速度、群速度的物理含义。

如果传播速度成为与地震波的频率有关的函数,那么构成脉冲波的各简谐分量将分别以各自不同的速度传播,在经过一定的时间后,各简谐波有着不同的传播距离,因而由它们叠加而成的波的延续长度(扰动区域的范围)就要比开始时有所增大。

换句话说,随着时间的推移,一个脉冲波将逐渐地变为一列波,这种现象称为波的频散(dispersion)。

相速度:

简谐波中任一等相位面的传播速度,即整个简谐波的传播速度。

群速度:

整个波列的传播速度。

第六章复习思考题

1.解释波动方程的克其霍夫积分解即式(6—15)的物理含义。

答:

式中的体积积分项是非齐次波动方程的特解,对应Ω区域内部震源对波场贡献部分,被积函数r为内部空间震源单元到观测点P的距离;

而式中的面积积分是齐次波动方程的一般解,反映Ω区域以外的外部空间震源的影响。

2.解释推迟位和超前位的概念。

推迟位:

超前位;

4.克其霍夫积分解求解的是哪一类波动方程?

其求解思路是什么?

震源分布于曲面以外的区域,我们希望确定曲面内部空间的位移场,解决的则是内部问题。

(1)利用傅立叶变化得到亥姆霍兹方程

(2)利用格林公式求解亥姆霍兹方程

(3)利用傅里叶反变换求未知函数

3.解释克其霍夫绕射公式中各项的物理含义,并说明克其霍夫绕射公式在实际中的应用。

空间任意一点P的波场值都是闭合曲面S上各点作为新震源发出的二次元波在该点叠加的结果,参与叠加的各元波对P点波场所起的贡献大小不同,贡献大小由方向因子决定。

5.解释菲涅耳带的概念及其影响因素,并说明菲涅耳带半径与地震分辨率的关系。

积分式的积分区域S是地下整个反射面的面积。

为了完成这一积分,我们对积分区域S进行分解,按照一定原则将它划分成一系列以地下反射点R为圆心的同心圆环状区带。

划分的原则是:

使得相邻圆环上的点到P点的距离之差等于地震波长的四分之一。

这样,来自相邻圆环上各点的绕射波传到P点的双程走时为地震波周期的一半,即反相。

这些同心圆环分别称为第一、第二、第

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1