小学四年级下学期数学竞赛试题含答案.docx
《小学四年级下学期数学竞赛试题含答案.docx》由会员分享,可在线阅读,更多相关《小学四年级下学期数学竞赛试题含答案.docx(23页珍藏版)》请在冰豆网上搜索。
小学四年级下学期数学竞赛试题含答案
20XX小学四年级下学期数学竞赛试题(含答案)
一、拓展提优试题
1.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是 .
○●○●●○●●●○●○●●○●●●○●○●●○…
2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高 分.
3.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?
4.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?
5.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年 岁.
6.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距 米.
7.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是 厘米.
8.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是 .
9.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是 .
10.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年 岁.
11.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有 辆.
12.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:
(1)水果店原有多少个火龙果?
(2)用完所有的哈密瓜后,还剩多少个猕猴桃?
13.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是 .
14.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果 个.
15.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有 副.
16.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年 岁.
17.(8分)2015年1月1日是星期四,那么2015年6月1日是星期 .
18.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子 个.
19.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第 天树上的果子会都掉光.
20.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装 盒.
21.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是 a+b最大是 ,a﹣b最小是 ,a﹣b最大是 .
22.三个连续自然数的乘积是120,它们的和是 .
23.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有 对.
24.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是 cm.
25.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用 秒.
26.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出 个正方形.
27.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得 颗巧克力.
28.空心圆和实心圆排成一行如下图所示:
○●○●●○●●●○●○●●○●●●○●○●●○●●●…
在前200个圆中有 个空心圆.
29.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人 名.
30.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是 米.
31.定义新运算:
a△b=(a+b)×b,a□b=a×b+b,如:
1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:
1△2□3= .
32.如果今天是星期五,那么从今天算起,57天后的第一天是星期 .
33.如图所示,5个相同的两位数
相加得两位数
,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则
= .
34.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是 .
35.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是 元.
36.A说:
“我10岁,比B小2岁,比C大1岁.”B说:
“我不是年龄最小的,C和我差3岁,C是13岁.”C说:
“我比A年龄小,A是11岁,B比A大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是 岁.
37.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是 .
38.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是 .
39.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式, .
40.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,
下册书有 页.
【参考答案】
一、拓展提优试题
1.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.
解:
2014÷9=223…7,
循环了223次后,还剩7个,里面有4个黑棋子,
223×6+4
=1338+4=1342(个)
答:
其中黑棋子的个数是1342个.
故答案为:
1342.
【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.
2.解:
设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,
所以(x+x﹣4)﹣(y+y﹣5)=17,
整理,可得:
2x﹣2y+1=17,
所以2x﹣2y=16,
所以x﹣y=8,
所以乙比丙得分高;
因为x﹣y=8,
所以(x﹣4)﹣(y﹣5)=9,
所以甲比丁得分高,
所以乙得分最高,丁得分最低,
所以四人中最高分比最低分高:
x﹣(y﹣5)
=x﹣y+5
=8+5
=13(分)
答:
四人中最高分比最低分高13分.
故答案为:
13.
3.解:
长方形长比宽多:
38﹣31=7(米),
长方形宽:
(38﹣7×2)÷3,
=24÷3,
=8(米),
长:
8+7=15(米),
(15+8)×2,
=23×2,
=46(米),
答:
长方形ABCD的周长46米.
4.解:
设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,
所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).
所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,
其中只有495符合要求,954﹣459=495.
答:
这个三位数A是495..
5.解:
10×4﹣(97﹣59)
=40﹣38
=2(岁)
所以豆豆是3年前出生的,即今年豆豆应该是3岁,
今年豆豆的哥哥的年龄为:
3+3=6(岁),
今年全家的年龄和为:
97﹣5×4=77(岁),
今年爸爸妈妈的年龄和为:
77﹣3﹣6=68(岁),
豆豆的妈妈今年的年龄为:
(68﹣2)÷2=33(岁).
答:
豆豆妈妈今年33岁.
故答案为:
33.
6.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.
解:
(50+60)×10÷2
=110×10÷2
=1100÷2
=550(米)
答:
甲、乙两地相距550米.
故答案为:
550.
【点评】此题根据关系式:
速度和×相遇时间=路程,进而解决问题.
7.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.
解:
(50+20)×2+(12+4)×2
=70×2+16×2
=140+32
=172(厘米)
答:
剩余部分图形的周长是172厘米.
故答案为:
172.
【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.
8.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的
;由此解答即可.
解:
5
=320
答:
圆形纸片的面积是320;
故答案为:
320.
【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的
.
9.解:
23×4+34×3﹣27×6,
=92+102﹣162,
=194﹣162,
=32.
答:
第4个数是32.
故答案为:
32.
10.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:
x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:
78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.
解:
设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:
x+3+x=78﹣x
2x+3=78﹣x
2x+x=78﹣3
3x=75
x=25
78﹣25=53(岁)
答:
妈妈今年53岁.
故答案为:
53.
【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.
11.解:
假设24辆全是4个轮子的汽车,则三轮车有:
(24×4﹣86)÷(4﹣3),
=10÷1,
=10(辆),
答:
三轮车有10辆.
故答案为:
10.
12.【分析】
(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:
剩下的130个对应着箭头部分,然后列式解答;
(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.
解:
(1)(130﹣10)÷2
=120÷2
=60(个)
60×6+10
=360+10
=370(个)
答:
水果店原有370个火龙果.
(2)370×2=740(个)
740﹣60×10
=740﹣600
=140(个)
答:
还剩140个猕猴桃.
【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.
13.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.
解:
28÷2=14
14×14=196
答:
大正方形的面积是196.
故答案为:
196.
【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.
14.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.
解:
根据题意可知,
原来甲筐比丙筐少(12+24)=36个苹果,
且原来丙筐是甲筐个数的2倍,
则原来甲筐有:
36÷(2﹣1)=36个,
原来丙筐有:
36×2=72个,
原来乙筐有:
72+(6+12)=90(个)
答:
乙筐内原有苹果90个.
故答案为:
90.
【点评】此题考查了差倍问题,根据题意得出:
原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.
15.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.
解:
假设全是围棋,则象棋就有:
(24×14﹣300)÷(24﹣18)
=36÷6
=6(副);
答:
其中象棋有6副.
故答案为:
6.
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.
16.【分析】3年前,爸爸的年龄是父子年龄差的
,今年后爸爸的年龄是年龄差的
,共经过了3年,对应的分率是(
),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.
解:
3÷(
)
=3÷(
)
=3×
=28(岁)
28×
=35(岁)
答:
爸爸今年35岁.
故答案为:
35.
【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.
17.解:
因为2015÷4=503…3,
所以2015年是平年,2月有28天,
(31×3+30+28)÷7
=151÷7
=21(个)…4(天)
因为2015年1月1日是星期四,
4+4﹣7=1
所以2015年6月1日是星期一.
故答案为:
一.
18.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.
解:
假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:
(31﹣1×2)÷(2×2﹣3)
=29÷1
=29(次)
3×29+31
=87+31
=118(个)
答:
袋中原有黑子118个.
故答案为:
118.
【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.
19.解:
因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120
当到第十六天时不够16个需要重新开始.1+2=3
即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)
故答案为:
17天
20.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.
解:
21×48÷28
=1008÷28
=36(盒)
答:
可以装36盒.
故答案为:
36.
【点评】此题主要考查的是乘法意义和除法意义的应用.
21.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.
解:
a+b最小是10+100=110,
a+b最大是99+999=1098,
a﹣b最小是100﹣99=1,
a﹣b最大是999﹣10=989.
故答案为:
110,1098,1,989.
【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.
22.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.
解:
120=2×2×2×3×5=(2×2)×(2×3)×5,
2×2=4,2×3=6,5,
即,三个连续自然数的乘积是120,这三个数是4、5、6,
所以,和是:
4+5+6=15.
故答案为:
15.
【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.
23.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.
解:
根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.
30,60,90,120,15,45,75,105,135共9个数字满足条件.
对应的数字就有9对.
故答案为:
9.
【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.
24.【分析】本题考察图形边长的平移.
解:
画出移动后的图,
所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.
【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.
25.解:
列车速度为:
(285﹣245)÷(24﹣22)
=40÷2,
=20(米);
列车车身长为:
20×24﹣285
=480﹣285,
=195(米);
列车与货车从相遇到离开需:
(195+135)÷(20+10),
=330÷30,
=11(秒).
答:
列车与货车从相遇到离开需11秒.
26.解:
根据题干分析可得:
答:
一共可以剪出6个正方形.
故答案为:
6.
27.解:
因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:
1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;
那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,
那么他最多可分得4+40=44颗,
要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,
由此可得出这时每个人的巧克力数为:
11、12、13、14,
答:
分得最多的小朋友至少可以得14颗巧克力;
故答案为:
14.
28.解:
200÷9=22…2,
所以22×3+1=67(个),
答:
前200个圆中有67个空心圆.
故答案为:
67.
29.解:
504÷8÷(108÷3÷4)﹣4,
=504÷8÷9﹣4,
=63÷9﹣4,
=7﹣4,
=3(名),
答:
需增加3名,
故应填:
3.
30.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.
解:
画图如下:
从C点到A点的距离是:
23﹣15=8(米),
答:
从C点到A点的距离是8米.
31.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.
解:
依题意可知:
a△b=(a+b)×b得1△2=(1+2)×2=6
a□b=a×b+b得6□3=3×6+3=21
故答案为:
21
【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.
32.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.
解:
57÷7,
=57÷7,
=8(周)…1(天);
余数是1,星期五再过1天是星期六.
故答案为:
六.
【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.
33.【分析】根据整数加法竖式计算的方法进行推算即可.
解:
根据题意,由加法竖式可得:
个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:
B=0或B=5;
假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;
所以,A=1,B=0;
由以上推算可得:
假设B=5时,5×5=25,向十位进2;
十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;
所以,A=1,B=5;
由以上推算可得:
因此两位数
是:
10或15.
故答案为:
10或15.
【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.
34.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.
解:
8÷2=4(人),
因为女生比男生多,所以男生的人数一定小于4人,
所以男生可能是1人,2人或3人;
故答案为:
1人,2人或3人.
【点评】解答此题的关键:
先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.
35.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的
,由题意可知:
第一杯饮料价钱的(1+
)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.
解:
13.5÷(1+
),
=13.5÷1.5,
=9(元);
答:
一杯饮料的原价是9元;
故答案为:
9.
【点评】解答此题的关键是:
判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.
36.解:
根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:
×√
第一句
第二句
第三句
A说
我10岁×
比B小2岁√
比C大1岁√
B说
我不是最小的
C和我差3岁
C是13岁
C说
我比A年龄小×
A是11岁√
B比A大3岁√
由上述推理可以得出:
A是11岁,则根据A说“比B小2岁,比C大1岁”可以得出:
B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;
将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;
答:
由上述推理可以得出A是11岁.
故答案为:
11.
37.【分析】“0”