第九章双光子吸收.docx
《第九章双光子吸收.docx》由会员分享,可在线阅读,更多相关《第九章双光子吸收.docx(28页珍藏版)》请在冰豆网上搜索。
第九章双光子吸收
第九章双光子吸收
694nm
―A
Eu:
CaF2(具有中心反演对称性)
694nmr
*
347nm
0
9.1双频双光子吸收
在一般情况下,可假定两个入射光波的频率不同,为'1和’4。
这
时双光子荧光的频率为
光能被吸收,而且荧光也较弱,所以只须考虑两个入射的光波。
这时,耦合波方程为
dE
dz
严C4?
|E4|2e^^4?
)|e1|2E4)
8cn4
dE1
dz
i3i(⑶
(ii
8cm
IEi|2Ei2
iTIE412Ei)
(9-2)
(9-3)
dE4
dz
i34
8cn4
ie4i2E4+严
4cn4
41i巳|2E4
(9-4)
dE,
i31(3)
dz
8cn,
11
UIE412El
(9-5)
IT*、,*
用E4乘(9-4)两边,用巳乘(9-5)两边,得
E;字二A'43)|E414+A上43)IEl|2|E412(9-6)dz8cn44cn4
E*芈1=严常|印4+护绪|E4|2|Ei|2(9-7)dz8cn,4cm
两边取共轭,得(根据上图及(9-1)式,■,,-4,"r■,,
皆远离介质的共振频率,工43)和整;3)皆为实数)
dE4=
i34
(3)
dz
8cn4
44
*
dE1
1
⑶
dz
8cn1
11
*
E4
Ei
IE,I4
IE4I
i34⑶*
41
4cn4
4cn1
⑶
14
|Ei|2|E4I2
IE412|EI2
(9-8)
(9-9)
(9-6)+(9-8),(9-7)+(9-9)得dIE412
dz
dI巳I2
dz
(3)
41
⑶"
41
二34
2cn4
…A俨冋2|巳|2
2cn1
是41的虚部,
II
411E112|E412
(9-10)
(9-11)
(9-
11)
dN4
dz
ocmt得
2得
3
r的虚部
(9-10)畀,
卉co
1
2严的玷叵®
0
吧…矢P'|E4|2|Ei「t
dz2
Ni,N4分别为「和,4的光波对应的单位面积通过的光量子数。
对双光子
收过程,必有业二鯉,所以,
II
⑶
41
dzdz
II
(3)
i4
(9-12)
用(3)"记之。
9-10)和(9-11)变成
dIE4|2
dz
d|Ei|2
2cn4
3i
II
⑶|Ei|2|E4|2
(9-13)
dz
2cri
dE4i34
⑶"叵|2|巳|2
(9-14)
dz
dEi
3
44
8cr4
3
E4
2
E4
(8-2)(光克尔效应)
dz
4crii4
2
E4Ei
(8-3)(光克尔效应)
从物理上判断,由于双光子吸收,
d|Ei[
0,所以(3)"0
dz
(9-14)-jni再与(9-13)比较得
d|E4|2
dz
1n4dz
¥"4
dz
积分之
I2
證1Ei|2)=0
IE412二
iJEifA
(9-15)
人作(0)|2
将(9-15)代入
d|巳|2
dz
冋0)l2
小4
9-14),得
A严⑶"|巳|2
2卯
(由处条件得到)
34
cn4令y=|巳|2,上式变成dy/(byCy2)=dz。
这里
31
b…A1
2cn〔
3
2
oC门们4
(3)"3i
稣(3)"(|E4(0)|
⑶"(们⑼-4h(0))
II
(3)|巳|4(9-16)
冲Ei(0)|2)
(9-18)
(9-17)
34
2cn4
J|E4(0)-|Ei(0)|2n<4
山(0)-4h(0))
2—1
利用积分公式(byCy)dy=1/bIn(y/(yb/C),积分(9-16)
—y
y
解得
(3)"
b/C
Bebz(B为待定常数)
(9-18)
(9-19)
bz
e
C1-BebZ
现在可以确定B。
由边界条件y(0)=|E,(0)|2及(9-仃)和(9-18)得尬4I1(0)
二(9-20)
儿(0)
bB
(9-19‘)
□4丨巳(0)|2
2
|巳(0)|2b/Cn41乍4(0)|
2
lb"4ll(0))||^°C□叵(0)|
2
匸(」4(o)-4ii(°))|Ei(0)|
%J(0)
代入(9-佃‘),得
2|Ei(0)|2(1打(0)-4li(0))ebz
IEi(z)1二
Cb=
l4(0)d-书扣
尬」4(0)
即li(z)=li(0)计汨供
□4(0)74li(0)e
bZ
l(z)l(0)il4(0)-4li(0)li(z)=li(0)=bz—
Sl4(0)e4li(0)
4li(0),因为(3)"
⑶"(il4(0)-4h(0))0
若il4(0)
~2—
上式近似为
(9-21)
(9-22)
(9-22)
1,
3M
;oc2ng
li(z)=li(0)ebz=li(0)e
由(9-15),易得
I(力-I(0)il4(0)-4li(0)
l4(z)l4(0)bz
儿⑼-4h(0)e
」i
ebz
0
⑶"l4(0)Z
(9-22'
(实验用)
当1打(°)
Z「
limli(z)二
z>:
:
liml4(z)二
Zr:
:
(9-23)
—(
3-4
2
;0Cng
limN4&)二N4(0)-Ni(0)这里N二丄(9-25)
z—:
:
3特4
当ri4(0)「4ii(0),因为-c2n^
9.2单频双光子吸收
对单频双光子吸收,■■4,方程(9-14)变成(注意系数要乘
1/2)[注意现在的*3)=可3)而不是”3]
(9-32)
响。
设有两束频率连续分布但方向相反的激光共轴传播,从样品中通
过,如图所示
样品池
设分子(原子)的跃迁频率为''0。
在分子坐标系上看,与分子的运动方向相反的光波产生蓝移。
设光波原来的频率为''',由于多普勒效应,分
子看到的频率为
(1V/c)
光束i
w
光束2
(a)
要产生双光子吸收(同时吸收两个光束1的光子或同时吸收两个光束2
的光子),必须是
(1V/c)2'
2(W/c)0(频率小于0/2的光被吸收了,多普勒增宽)
同理,与分子的运动方向相同的光波产生红移,设光波原来的频率为
",分子看到的频率为
(1-V/c)"
光束1
光束2
(b)
要产生双光子吸收(同时吸收两个光束1的光子或同时吸收两个光束2的光子),必须是
(1-V/c)2"
0/2
(1-V/c)
或
豹0
(**
二(1V/c)-0
2
2"=(VV/c)0(频率大于0/2的光被吸收了,多普勒增宽)若分子同时吸收一个光束1的光子和一个光束2的光子,则因为对图(c)之上图光束1中频率为才的光’分子看到的频率变为(「V/c弓;对图(c)
之上图光束2中频率为少的光,分子看到的频率变为(「V/c)-0;双光子
22
吸收[不能说同时吸收一个"和一个••',因(*)和(**)成立的前提是分子同时吸收同一光束两个同向的光子而不是吸收不
同光束中两个不同向的光子]
(1V/ch2°(l-V/c)^0—。
(无多普勒增宽)光束2
光束1(图(C)上图)
吸收光束1和光束2的光子均为
。
/2
光束1
(C)
比较
光束2
光束1.光束2
V
卜V
光束1
对一个V,单方向平均只有一个光子被吸收
光束1
两者皆取
_1
或•.
光束2
”V两者取一
光束2
V两者取一
所以,无多普勒增宽和有多普勒增宽的双光子吸收各占一半。
即
Id()d——In()d
这里
(时_时0)2
-4ln2
ID(IoeD
I()山
N(-)
14(卍
N(Vx,Vy,Vz)dVxdVydVz
-^(vX+vy+vZ)
=Ae2kldvxdvydvz
(多普勒增宽线型-高斯线型)
(自然线型-洛仑兹线型)
2.双光子荧光显微镜
突破了衍射极限角分辨率
了极限分辨距离y^=1.22
122几(D为物镜直径),或突破
D
1.22
光电倍增管
非共焦光线
激光器
共焦光线
物镜
光源针孔光圈
焦平面
li(z"
(a)
(b)
物鏡
物鏡
焦平面
焦平面
樣晶
nsinuN.A.
探测器针
孔光圈
波长选择
反射镜
--:
V-■:
F
■■鼻■・・
样品
普通显微镜的衍射光斑
Ii(r)=l°e
3
2oc2ni2
-4ln2r2/2
I!
—(3)li(r)z]
li(r)[1-
(9-35)
变形
(a)在单光子激发机制下,样品中光所经之处皆受到激发
(b)在双光子激发机制下,仅在光束聚焦断面产生激发。
3.双光子吸收三维光存储【中国激光32
(1)(2005)92)]
attcnunfor
filler
-scanner
1
shutter
llor
mon
mirror
*-1
^icrvs
-
V
I
—lens
J(/sapphireM
shutter
attcnunfor
I
filler
I,miiref
c__lens
“sapphire
asei
■
1二f
cc^riptHcr
controlsjjlcm
It^CTivt-'mcmurvmcdiLim
(b)
4.双光子吸收三维微细加工【微纳电子技术第7/8期(2003)137】
倉
Ti飞斤(ft吒U
limp
5.(双光子吸收)上转换激射【中国激光28(8)(2001)781】
实验方法研究了三种新激光染料PSPI,DEASPI和HEASPI的双光子吸
收荧光和上转换激射。
它们的二甲基酰胺溶液在锁模Nd:
YAGt光器1064nm
红外光照射下,发射出很强的红色可见荧光和激射光。
荧光峰值和激射波长分别位于〜648nm和〜624nm。
实验测得DEASPI,PSPI和HEASPI的二甲基酰胺溶液的上转换激射效率高达10.17%,9.18%和7.11%。
6.双光子吸收光限幅
2
(W/m2)
f(I10)
y(i10)
2
(W/m2)
I10
…………
双光子吸收忖料对三韩入射脉冲的
所以,双光子吸收光限幅应用可能性极小!
9.4单频双光子吸收•线性吸收不可略
在线性吸收不可略情况下,易导出,关于|日|2的微分方程是
令|Ei|2-y,(3)-a,(9-37)变为
4cni
3•⑶"
:
二—i22(:
较大,使得e~z-i将如何?
)
2ocni
一般情况下,不能有Ijz)二Ii(0)^r:
)z且:
Ii(0)的结果。
:
>0时,(9-40)就变成(9-34)
这正是无线性吸收条件下双光子吸收的情况9.5双频双光子吸收实验应注意的问题
双频双光子吸收耦合波方程
dz
双频光克尔效应耦合波方程
e4和e得到的
(8-1)式或(9-2)和(9-3)是由下两式两边分别点乘
宁=『(⑶:
e4e4|E4|2E42⑶:
勺勺|日|2E4)
dz8cr4
齐严3:
恥曰命123:
e4e4E42E1
dz8cr1
当存在着光克尔效应时,由此两式一般得不到(8-1)第二式或(9-2)
和(9-3),因为巳和E4一般不能一直保持线偏振。
因此,当存在着光
克尔效应时,已有的双频双光子吸收的理论结果必须重新讨论。
为了作
比较,我们讨论E^>E1且没有线性吸收的情况。
由光克尔效应一
章,我们知道,对4和24远离共振时,我们由方程组
dEiii
dz
i:
ii
|E』2Eiii
dEi
dz
i31
4cm
Ei_
(8-3)'
解得E4=忙4(0)。
进一步
i-3-/1(3i|E4(O)|2k10Z
//z=//0e1
i43-14)|E4(0)|2ki°z
E仁z二日_0e1
对无双光子吸收情况,我们已经知道
这里
1
li〃O=1仁0110
2
另一方面,由双频光子吸收理论(注意/43)为实数),我们有耦合
波方程
⑶冋(0)|2|曰|2(9-14)
dz2cni
现在,(9-14)可以直接积分,结果是
-亘2‘IE4(0)|2z
|Ei(z)I2=|Ei(0)I2e2cni
或
-32i⑶"l4(0)Z
li(zpli(0)e°c叩4
这与由双频光子吸收一般理论结果
li(z)=li(0)
il4(0)-4li(0)
儿⑼于…rli(0)
在条件1I4(0^4I1(0)下得到的近似结果是一样的。
要注意,
在这里-3/(0c2n1n4)⑶"(禹⑼-小⑼)0
我们要强调的是,不考虑和考虑光克尔效应得到的双光子吸收的结果
光克尔系数的表达式)。
故在双光子吸收实验中,我们应选择Ei平
行或垂直于E4。
4或24又产生共振时,们一般有
一:
4Z
Ei〃(z)二Ei〃(0)expS/In[i-(i-e「4z)
4cni
-i3
MH七
EWEigexp4毎
i(3[ln[i-(i-r4z)
「2
Ie4(°)I2]iz
li(0)
li(旷〒犁沁朋
(3)"
耳紅ln[i-(i-e«)
2
「Z'WMLiZ
辺exp2
2°C2门祁4
—耳3)"ln[i—(i—e
2cn4
4;,是负的。
所以,为了避免光克尔效应的影响,在做双频双光子吸收实验时,两个频率的待测光应采用偏振正交或偏振平行的线偏振光。