轴套类零件的加工工艺及设计21.docx

上传人:b****5 文档编号:12055981 上传时间:2023-04-16 格式:DOCX 页数:45 大小:242.34KB
下载 相关 举报
轴套类零件的加工工艺及设计21.docx_第1页
第1页 / 共45页
轴套类零件的加工工艺及设计21.docx_第2页
第2页 / 共45页
轴套类零件的加工工艺及设计21.docx_第3页
第3页 / 共45页
轴套类零件的加工工艺及设计21.docx_第4页
第4页 / 共45页
轴套类零件的加工工艺及设计21.docx_第5页
第5页 / 共45页
点击查看更多>>
下载资源
资源描述

轴套类零件的加工工艺及设计21.docx

《轴套类零件的加工工艺及设计21.docx》由会员分享,可在线阅读,更多相关《轴套类零件的加工工艺及设计21.docx(45页珍藏版)》请在冰豆网上搜索。

轴套类零件的加工工艺及设计21.docx

轴套类零件的加工工艺及设计21

 

毕业设计说明书

轴套类零件加工工艺及设计

 

软件职业技术学院

学生姓名:

学号:

数控

学院:

周建强

专业:

指导教师:

2008年6月

1引言1

2数控机床的概述2

2.1数控及自动编程的发展简介2

2.1.1数控机床的发展过程:

2

2.1.2自动编程软件的发展、联系及优越性2

2.2数控机床的基本组成及工作原理3

2.2.1数控机床的基本组成3

2.2.2数控机床的工作原理3

2.3数控机床的分类3

2.3.1按控制刀具与工件相对运动轨迹分类3

2.3.2按加工方式分类3

2.3.3按控制坐标轴数分类4

2.3.4按驱动系统的控制方式分类4

2.4数控机床的应用范围4

2.5数控机床的特点4

第三章轴类零件的加工工艺5

第四章轴类零件实例加工

(一)6

4.1实体零件的生成6

4.2加工工艺分析7

4.2.1分析零件图纸和工艺分析7

4.2.2确定装夹方案9

4.2.3确定加工路线及进给路线9

4.2.4刀具的选择10

4.3选择切削用量12

4.3.1主轴转速的确定12

4.3.2进给速度的确定12

4.3.3背吃刀量确定12

4.4编程13

4.4.1编程技巧13

4.4.2编程特点15

4.4.3编程方法15

4.4.4编程步骤16

4.4.5实例分析16

5典型实例分析

(二)17

6设计总结21

附录A加工程序…………………………………………………………………………………23

参考文献30

致谢31

1引言

科学技术和社会生产的不断发展,对机械产品的性能、质量、生产率和成本提出了越来越高的要求。

机械加工工艺过程自动化是实现上述要求的重要技术措施之一。

他不仅能够提高品质质量和生产率,降低生产成本,还能改善工人的劳动条件,但是采用这种自动和高效率的设备需要很大的初期投资,以及较长的生产周期,只有在大批量的生产条件下,才会有显著的经济效益。

随着消费向个性化发展,单件小批量多品种产品占到70%--80%,这类产品的零件一般采用通用机床来加工。

而通用机床的自动化程度不高,基本上由人工操作,难于进一步提高生产率和保证质量。

特别是由曲线、曲面组成的复杂零件,只能借助靠模和仿行机床或者借助画线和样板用手工操作的方法来完成,其加工精度和生产率受到极大影响。

为了解决上述问题,满足多品种、小批量,特别是结构复杂精度要求高的零件的自动化生产,迫切需要一种灵活的、通用的,能够适应产品频繁变化的“柔性”自动化机床。

数控机床才得已产生和发展。

数控技术是数字控制(NumericalControl)技术的简称。

它采用数字化信号对被控制设备进行控制,使其产生各种规定的运动和动作。

利用数控技术可以把生产过程用某中语言编写的程序来描述,将程序以数字形式送入计算机或专用的数字计算装置进行处理输出,并控制生产过程中相应的执行程序,从而使生产过程能在无人干预的情况下自动进行,实现生产过程的自动化。

采用数控技术的控制系统称为数控系统(NumericalControlSystem)。

根据被控对象的不同,存在多种数控系统,其中产生最早应用最广泛的是机械加工行业中的各种机床数控系统。

所谓机床数控系统就是以加工机床为控制对象的数字控制系统。

安装有数控系统的机床称为数控机床。

它是数控系统与机床本体的结合体。

数控车床是数控系统与车床本体的结合体;数控铣床是数控系统与铣床本体的结合体。

除此之外还有数控线切割机床和数控加工中心等。

数控机床是具有高附加值的技术密集型产品,是集机械、计算机、微电子、现代控制及精密测量等多种现代技术为一体的高度机电一体化设备。

数控机床的产生使传统的机械加工发生了巨大的变化,这不仅表现在复杂工件的制造成为可能,更表现在采用了数控技术后使生产加工过程真正实现了自动化。

2数控机床的概述

2.1数控及自动编程的发展简介

2.1.1数控机床的发展过程

由于计算机科学技术的发展,1952年美国泊森斯公司(parsons)和麻省理工学院(M.I.T.)合作,研制成功了世界上第一台以数字计算机原理为基础的数字控制(NumericalControl简称NC)三坐标铣床,开创了机械加工自动化的新纪元。

1955年数字控制(简称数控)机床进入使用化阶段,在发展曲面的加工中发挥了重要的作用。

我国从1958年开始研制数控机床,60年代中期进入实用阶段。

目前我国已有许多机床厂能够生产不同类型的数控机床。

我国经济型数控机床的研究、生产和推广也取得了较大的发展,有力的推动了各行业的技术改造,取得了明显的经济效益和社会效益。

未来数控机床的发展趋势主要表现在以下三个方面即数控技术水平方面、数控系统方面及驱动系统方面。

2.1.2自动编程软件的发展、联系及优越性

CAD/CAM技术是现代制造技术领域中的重要组成部分。

经历半个多世纪的发展,至今已形成了比较完整的科学技术体系,并在高新技术领域占有很重要的位置。

随着CAD技术的发展,CAD/CAM一体化成为可能。

从20世纪90年代起,CAD/CAM技术向标准化、智能化的方向发展。

为了实现系统集成,资源共享和产品生产与组织管理的高度自动化,提高产品的竞争CAD/CAM系统之间和各个子系统之间要进行统一的数据交换。

从狭义上讲,NC编程就是CAM的同意词。

利用NC加工技术,可以快速应对市场的变化,提高产品的竞争力。

同传统机械加工相比,NC加工具有如下优势:

1缩短了产品加工是的辅助时间,提高了加工效率。

利用数控机床,特别是数控加工中心进行NC加工,基本上一次装夹,减少了夹具设计与制造以及工件定位与装夹时间。

2加工精度高、安全可靠。

利用数控机床和NC加工技术,可以在制造前进行加工路径的模拟和仿真,减少加工过程中的误差,并能进行干涉检查。

能够及早发现加工过程中的问题并加以修正。

3可以加工复杂的零件。

一般机床不能加工的零件,都可以在数控机床上进行加工并且加工精度高,可重复性好。

随着CAD/CAM一体化技术的发展,很多著名的软件都具有很强的NC功能。

在中国使用较为广泛的集成软件有Pro/ENGINEER、UGIL、MasterCAM和CATIA等。

Pro/ENGINEER是CAD/CAM/CAPP/POM于一体的,能够完成制造业所需的各个方面功能设计的软件包,Pro/ENGINEER集成了零件设计产品装配及NC加工,具有铣削、车削、点火花线切割等加工编程能力。

2.2数控机床的基本组成及工作原理

2.2.1数控机床的基本组成

数控机床加工零件的工作过程分以下几个步骤实现:

1、根据被加工零件的图样与工艺方案,用规定的代码和程序格式编写加工程序;2、所编程序指令输入机床数控装置;3、数控装置将程序(代码)进行译码、运算之后,向机床各个坐标的伺服机构和辅助控制装置发出信号,以驱动机床的各运动部件,并控制所需的辅助动作,最后加工出合格的零件。

由此可知,数控机床的基本组成包括加工程序、输入输出装置、数控系统、伺服系统和辅助控制装置、反馈系统、电器逻辑装置以及机床本体。

由下图2.2.1可知机床数控系统的基本工作流程。

图2.2.1:

机床数控系统的基本工作流程

2.2.2数控机床的工作原理

由上图可知,数控机床在加工时,是根据工件图样要求及加工工艺过程,将所用刀具及机床各部件的移动量、速度及动作先后顺序、主轴转速、主轴旋转方向及冷却等要求,以规定的数控代码形式,编制成程序单,并输入到机床专用计算机中。

然后,数控系统根据输入的指令,进行编译、运算和逻辑处理后,输出各种信号和指令,控制机床各部分进行规定的位移和有顺序的动作,加工出各种不同形状的工件。

2.3数控机床的分类

2.3.1按控制刀具与工件相对运动轨迹分类

点位控制(PointtoPointControl)或位置控制(Positioning)数控机床

轮廓控制ContouringControl数控机床

2.3.2按加工方式分类

1.金属切削类:

如数控车、钻、镗、铣、磨、加工中心等。

2.金属成型类:

如数控折弯机、弯管机、四转头压力机等。

3特殊加工类:

如数控线切割、电火花、激光切割机等。

4其他类:

如数控火焰切割机、三坐标测量机等。

2.3.3按控制坐标轴数分类

1两坐标数控机床:

两轴联动,用于加工各种曲线轮廓的回转体,如数控车床。

2三坐标数控机床:

三轴联动,多用于加工曲面零件,如数控铣床、数控磨床。

3多坐标数控机床:

四轴或五轴联动,多用于加工形状复杂的零件。

2.3.4按驱动系统的控制方式分类

1开环控制数控机床

2闭环控制(ClosedLoopControl)数控机床

3半闭环控制(Semi-closedLoopControl)数控机床

2.4数控机床的应用范围

1轮廓形状复杂,加工精度高的零件;

2用普通机床加工时,需要制作复杂工艺装备的零件;

3用普通机床加工时,工艺路线过长、工装过多的零件;

4多品种、小批量生产的零件(100件以内);

5新产品的试制零件;

6价值昂贵,加工中不许报废的零件;

7生产周期段的急需件;

8集铣、钻、镗、扩、铰、攻螺纹等多种工序于一体的零件。

2.5数控机床的特点

1适应性强,适应加工单件或中小批量复杂工件;

2加工精度高,产品质量稳定;

3自动化程度高,劳动强度低,改善劳动条件;

4生产效率高;

5良好的经济效益;

6有利于生产管理的现代化。

为了达到机床的有效利用,获得较好的经济效益,一般轴套类零件的加工使用数控车床。

在下面的章节里,我将围绕两种典型的数控车床来阐述轴套类零件的加工工艺。

3轴类零件的加工工艺

轴类零件是机器中经常遇到的典型零件之一。

它主要用来支承传动零部件,传递扭矩和承受载荷。

轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。

根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。

轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。

轴用轴承支承,与轴承配合的轴段称为轴颈。

轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,主要要求如下:

1尺寸精度比一般的零件的尺寸精度要求高。

轴类零件中支承轴颈的精度要求最高,为IT5~IT7;配合轴颈的尺寸精度要求可以低一些,为IT6~IT9。

2形状精度高。

3位置精度高,其一般轴的径向跳动为0.01~0.03,高精度的轴为0.001~0.005。

4表面粗糙度比一般的零件高,支承轴颈和重要表面的表面粗糙度Ra常为0.1~0.8um,配合轴颈和次要表面的表面粗糙度Ra为0.8~3.2um。

轴类零件一般常用的材料有45钢、40Cr合金钢、轴承钢GCr15和弹簧钢65Mn,还有20CrMoTi、20Mn2B、20Cr等。

轴类零件最常用的毛坯是棒料和锻件,只有一些大型或结构复杂的轴,在质量允许时才采用铸件。

由于毛坯经过锻造后,能使金属内部纤维组织沿表面均匀分布,可获得较高的抗拉、抗弯及抗扭强度。

所以除了光轴、直径相差不大的阶梯轴可使用热轧料棒料或冷拉棒料外,一般比较重要的轴大都采用锻件。

另外轴类零件的毛坯还需要经过热处理。

轴的结构设计原则:

1节约材料,减轻重量尽量采用等强度的外形尺寸,或大的截面系数的截面形状。

2易于轴上零件的精确定位,稳固装配拆卸和调整。

3采用各种减少应力应用和提高强度的结构措施。

4便于加工制造和保证精度。

轴类零件中工艺规程的制订,直接关系到工件质量、劳动生产率和经济效益。

一零件可以有几种不同的加工方法,但只有某一种较合理,在制订机械加工工艺规程中,须注意以下几点:

1零件图工艺分析中,需理解零件结构特点、精度、材质、热处理等技术要求,且要研究产品装配图,部件装配图及验收标准。

2渗碳件加工工艺路线一般为:

下料→锻造→正火→粗加工→半精加工→渗碳→去碳加工→淬火→车螺纹、钻孔或铣槽→粗磨→低温时效→半精磨→低温时效→精磨。

3粗基准选择:

有非加工表面,应选非加工表面作为粗基准。

对所有表面都需加工的铸件轴,根据加工余量最小表面找正。

且选择平整光滑表面,让开浇口处。

选牢固可靠表面为粗基准,同时,粗基准不可重复使用。

4精基准选择:

要符合基准重合原则,尽可能选设计基准或装配基准作为定位基准。

符合基准统一原则。

尽可能在多数工序中用同一个定位基准。

尽可能使定位基准与测量基准重合。

选择精度高、安装稳定可靠表面为精基准。

4轴类零件实例加工

(一)

4.1实体零件的生成

实体是利用Pro/E软件生成的:

首先打开Pro/E软件新建一个零件窗口,然后草绘出来零件的二维零件图,在利用软件中的实体把二维图转换成实体(如图2—1所示)。

先保存一下,然后在打开一个制造的窗口,这样会弹出一个对话框,先点装配,有回弹出一个子菜单,再点装配,把刚才保存的零件装配到制造这个窗口上,调一下约束,把零件调到完全约束状态。

然后点击完成。

点里面的创建按扭,在下面的菜单栏里点定义后会弹出一个窗口,然后在实体零件上选一个与轴长平行的基准面,在选一个与轴垂直的基准面,然后会自动弹出草绘界面,在那上面草绘出一个比实体零件大的圆(Φ70),然后点确定按扭,把生成的毛坯覆盖住零件长度146。

这样就完成了毛坯的生成(如图2—2所示)。

图2-1

图2-2

4.2加工工艺分析

如图4.2.1-1

4.2.1分析零件图纸和工艺分析

该轴类零件由圆柱、圆锥、圆弧、螺纹和槽等表面组成。

零件材料为45号钢,无热处理要求,该零件进行精加工,图4.2.1-1中Φ70不加工。

通过上述分析,可以采用下面的工艺措施:

选用具有直线、圆弧插补功能的数控车床加工,机床名称:

CJK6032A数控机床,如下图:

4.2.1-2所示。

 

如图:

4.2.1-2

相关参数如下:

1零件螺纹外径、圆锥、侧角、外圆和台阶可一次加工,圆弧已大于90°,加工是要注意保证加工不干涉。

2为便于装夹,坯件左端预车出加持部分,右端也应先车出并钻好中心孔,毛坯用料为直径70mm棒料。

3该零件在加工中只需要一次装夹加工,从图纸上进行尺寸标注分析:

工件坐标系的工件原点应选择定在零件装夹后的右端面圆心处O(0,0)点,如图4.2.1-1所示。

4.2.2确定装夹方案

由于夹具确定了零件在数控机床坐标系中的位置,因而根据要求夹具能保证零件在机床的正确坐标方向,同时协调零件与机床坐标系的尺寸。

因此数控机床的夹具应定位可靠、稳定,一般采用三爪自定心卡盘、四爪单动卡盘或弹簧夹头。

分析本工件为外轮廓加工,外表面可以依次加工,无内孔,可采用一次装夹完成粗、精加工。

为了保证在加工螺纹时确保工件不来回晃动,减少误差,一般以轴线和左端面为定位基准,左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支撑装夹方案。

4.2.3确定加工路线及进给路线

加工顺序的确定按由内到外、由粗到精、由近到远的原则确定,在一次装夹中尽可能加工出较多的工件表面。

因此在本设计中加工路线是按先粗车(给精车留余量1mm),然后再精车,按先主后次的加工原则尽量使“刀具集中”,即用一把刀加工完相应的部位,在换另一把刀加工其他部位。

以减少空行程和换刀时间,因此:

1车外圆:

自右向左加工,起加工路线为:

先倒角——切削螺纹的实际外圆Φ28——侧角——切削锥度部分——撤消圆弧部分——车削Φ66。

2切槽:

考虑到槽不太宽,可采用一把刀一刀完成,选择刀具宽度与槽宽相等,分多刀步进切削。

步进深度为1mm。

3车螺纹:

分析螺纹深度不深,采用两刀完成螺纹加工。

4切断:

零件加工结束后,选择切断刀将工件从棒料上分离出来完成一个零件的加工。

加工路线如下图4.2.3所示(数控自动加工工序卡):

 

如图4.2.3

软件职业技术学院

数控自动加工工序卡

型别

车削

零件图号

零件名称

轴类零件

3—1 

设备名称

车床 

设备型号

CJK6032A

程序号

%0001 

基本材料

45#钢

硬度

HRC26-28

工序名称 

区域车削

工序号

NC01 

 

工步号

工步内容

夹刀具

量具

编号

名称

编号

名称

 1

粗车外圆 

 01

外圆车刀

 01

游标卡尺

 2

精车槽

 02

切槽刀

 02

千分尺

 3

精车螺纹

 03

螺纹刀

 01

游标卡尺

 4

精车外圆

 03

螺纹刀

 02

千分尺

4.2.4刀具的选择

与普通机床相比,数控加工时对刀具提出了更高的要求,不仅要求刚性好、精度高,而且要求尺寸稳定、耐用度高、断屑和排屑性能好,同时要求安装调整方便,满足数控机床的高效率。

因此,刀具的选择是数控车削加工工艺中的重要内容之一,它不仅影响机床加工效率而且直接影响零件的加工质量。

在编程时选择刀具通常要考虑机床的加工能力、工序内容、被加工零件材料等因素。

数控加工刀具材料要求采用新型优质材料,一般原则是尽可能选择硬质合金精密加工时还可选择性能更好、更耐磨的陶瓷立方氮化硼和金刚石刀具并优选刀具参数。

一般来说需将所选定的刀具参数填入表轴承套数控加工刀具卡片中,以便于编程和操作管理。

常见的轴套类数控加工刀具如下。

 轴承套数控加工刀具卡片

产品名称或代号

数控车工艺分析实例

零件名称

轴承套

零件图号

Lathe-01

序号

刀具号

刀具规格名称

数量

加工表面

刀尖半径mm

备注

1

T01

45°硬质合金端面车刀

1

 车端面

2

T02

中心钻

1

 钻中心孔

 

 

3

T03

割槽刀

1

 割槽

 

 

4

T04

镗刀

1

 镗内孔各表面

5

T05

90°外圆车刀

1

 车外圆表面

6

T06

大钻头

1

 钻底孔

 

 

7

T07

60°外螺纹车刀

1

 车M45螺纹

 

 

编制

张忠祥

审核

批准

年月日

共1页

第1页

根据加工要求,选用三把刀具,Ⅰ号刀车外圆,Ⅱ号刀切槽,Ⅲ号刀车螺纹及进行精加工。

刀具应正确的选择换刀点,以便在换刀过程中,刀具与工作机床和夹具不会碰撞。

此设计中,换刀点为P(100,100)见图4.2.1-1。

(1)粗车外轮廓选择硬质合金90度外圆刀,其副偏角应取大一些为防止干涉,现取副偏角为35度;

(2)切槽选择硬质合金切槽刀,刀尖宽度为5mm;

(3)精车倒角、外圆、圆锥、圆弧。

车M28Χ1.5螺纹,应选用硬质合金60°外螺纹刀,取刀尖半径为0.15~0.2mm。

刀具选择完毕、工件装夹方式确定后,即可通过确定工件原点来确定工件坐标系。

如果要运行这一程序来加工工件,必须确定刀具在工件坐标系开始运动的起点。

程序起始点或起刀点一般通过对刀来确定,所以,该点又称为对刀点。

在编制程序时,要正确选择对刀点的位置。

对刀点设置原则是:

(1)便于数值处理和简化程序编制;

(2)易于找正并在加工过程中便于查找;

(3)引起的加工误差小。

对刀点可以设置在加工零件上,也可以设置在夹具或机床上。

4.3选择切削用量

数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写入程序中。

切削用量包括主轴转速、背吃刀量及进给速度等。

对于不同的加工方法,需要选用不同的切削用量。

切削用量的选择原则是:

保证零件加工精度和表面粗糙度,充分发挥刀具切削性能,保证合理的刀具耐用度;并充分发挥机床的性能,最大限度提高生产率,降低成本。

  4.3.1主轴转速的确定

主轴转速应根据允许的切削速度和工件(或刀具)直径来选择。

 根据本次加工的实际情况选择主轴转速为:

车直线、圆弧和切槽时其粗车主轴转速为400r/min,精车时,主轴转速900r/min,车螺纹时的主轴转速为400r/min。

4.3.2进给速度的确定

进给速度是数控机床切削用量中的重要参数,主要根据零件的加工进度和表面粗糙度要求以及刀具、工件的材料性质选取。

最大进给速度受机床刚度和进给系统的性能限制。

一般粗车选用较高的进给速度,以便较快去除毛坯余量,精车以考虑表面粗糙和零件精度为原则,应选择较低的进给速度,得出下表

 

外圆

0.15min/r

0.08min/r

内孔

0.05min/r

0.04min/r

0.04min/r

在本例中选择进给速度为:

粗车时,选取进给量为0.14mm/r,精车时,选取进给量为0.08mm/r,车螺纹时,进给量等于螺纹导程,选为1.5mm/r。

4.3.3背吃刀量确定

背吃刀量根据机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量(除去精车量),这样可以减少走刀次数,提高生产效率。

为了保证加工表面质量,可留少量精加工余量,一般0.2-0.4mm。

本例中,背吃刀量的选择大致为如下表4.3.3:

如表4.3.3:

 

外圆

1.5-2(mm)

0.2-0.4(mm)

内孔

1-1.5(mm)

0.1-0.3(mm)

螺纹

随进刀次数依次减少

根据刀宽,分两次进行

注意:

 背吃刀量的选择因粗、精加工而有所不同。

粗加工时,在工艺系统刚性和机床功率允许的情况下,尽可能取较大的背吃刀量,以减少进给次数;精加工时,为保证零件表面粗糙度要求,背吃刀量一般取0.l~0.4mm较为合适。

故在本例中粗加工时:

切削深度为4mm,精车时切削深度为0.4mm。

4.4编程

数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。

随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。

数控车床是目前使用最广泛的数控机床之一。

4.4.1编程技巧

数控车床与普通车床相比,一个显著的优点是:

对零件变化的适应性强,更换零件只需改变相应的程序,对刀具进行简单的调整即可做出合格的零件,为节约成本赢得先机。

但是,要充分发挥数控机床的作用,不仅要有良好的硬件,(如:

优质的刀具、机床的精度等),更重要的是软件:

编程,即根据不同的零件的特点,编制合理、高效的加工程序。

  数控车床虽然加工柔性比普通车床优越,但单就某一种零件的生产效率而言,与普通车床还存在一定的差距。

因此,提高数控车床的效率便成为关键,而合理运用编程技巧,编制高效率的加工程序,对提高机床效率往往具有意想不到的效果。

  1 灵活设置参考点

 一般来说,数控车床共有二根轴,即主轴Z和刀具轴X。

棒料中心为坐标系原点,各刀接近棒料时,坐标值减小,称之为进刀;反之,坐标值增大,称为退刀。

当退到刀具开始时位置时,刀具停止,此位置称为参考点。

参考点是编程中一个非常重要的概念,每执行完一次自动循环,刀具都必须返回到这个位置,准备下一次循环。

因此,在执行程序前,必须调整刀具及主轴的实际位置与坐标数值保持一致。

然而,参考点的实际位置并不是固定不变的,编程人员可以根据零件的直径、所用的刀具的种类、数量调整参考点的位置,缩短刀具的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1