高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx

上传人:b****4 文档编号:12001690 上传时间:2023-04-16 格式:DOCX 页数:23 大小:266.45KB
下载 相关 举报
高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx_第1页
第1页 / 共23页
高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx_第2页
第2页 / 共23页
高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx_第3页
第3页 / 共23页
高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx_第4页
第4页 / 共23页
高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx

《高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx》由会员分享,可在线阅读,更多相关《高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx(23页珍藏版)》请在冰豆网上搜索。

高考物理一轮复习热点题型专题04牛顿运动定律的应用.docx

高考物理一轮复习热点题型专题04牛顿运动定律的应用

2020年高考物理一轮复习热点题型专题04--牛顿运动定律的应用

题型一牛顿三定律的理解

题型二 超重与失重现象

题型三 瞬时问题的两类模型

题型四 动力学图象问题

题型五 动力学中的连接体问题

题型六 动力学两类基本问题

题型七 动力学方法分析多运动过程问题

题型八 临界和极值问题

题型一牛顿三定律的理解

一 牛顿第一定律的理解

1.明确了惯性的概念

牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性,即物体保持原来的匀速直线运动状态或静止状态的性质.

2.揭示了力的本质

力是改变物体运动状态的原因,而不是维持物体运动状态的原因.

3.理想化状态

牛顿第一定律描述的是物体不受外力时的状态,而物体不受外力的情形是不存在的.如果物体所受的合外力等于零,其运动效果跟不受外力作用时相同,物体保持静止状态或匀速直线运动状态.

4.与牛顿第二定律的关系

牛顿第一定律和牛顿第二定律是相互独立的.力是如何改变物体运动状态的问题由牛顿第二定律来回答.牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律.

二 牛顿第二定律的理解

三 牛顿第三定律的理解与应用

1.相互作用力的特点

(1)三同

(2)三异

(3)二无关

2.一对平衡力与作用力、反作用力的比较

 名称

项目  

一对平衡力

作用力与反作用力

作用对象

同一个物体

两个相互作用的不同物体

作用时间

不一定同时产生、同时消失

一定同时产生、同时消失

力的性质

不一定相同

一定相同

作用效果

可相互抵消

不可抵消

【例题1】(2019·福建省三明一中模拟)科学思维和科学方法是我们认识世界的基本手段.在研究和解决问题的过程中,不仅需要相应的知识,还需要运用科学的方法.理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图所示.以下为他的设想步骤:

①两个对接的斜面,静止的小球沿一个斜面滚下,小球将滚上另一个斜面;②如果没有摩擦,小球将上升到原来释放的高度;③减小第二个斜面的倾角,小球在这个斜面上仍然会达到原来的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球会沿水平面做持续的匀速运动.通过对这个实验的分析,我们可以得到的最直接的结论是(  )

A.自然界的一切物体都具有惯性

B.光滑水平面上运动的小球,运动状态的维持并不需要外力

C.如果小球受到力的作用,它的运动状态将发生改变

D.小球受到的力一定时,质量越大,它的加速度越小

【答案】 B

【解析】 伽利略的理想斜面实验只能说明小球具有惯性,推广到一切物体的是牛顿,A错误;伽利略通过“理想斜面实验”和科学推理,得出的结论是:

力不是维持物体运动的原因,光滑水平面上运动的小球,运动状态的维持并不需要外力,B正确;如果小球受到力的作用,它的运动状态将发生改变,这是牛顿得出的,C错误;小球受到的力一定时,质量越大,它的加速度越小,这是牛顿第二定律内容,D错误.

【例题2】(2019·新课标全国Ⅲ卷)如图(a),物块和木板叠放在实验台上,物块用一不

可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。

t=0时,木板开始受到水平外

力F的作用,在t=4s时撤去外力。

细绳对物块的拉力f随时间t变化的关系如图(b)所示,木

板的速度v与时间t的关系如图(c)所示。

木板与实验台之间的摩擦可以忽略。

重力加速度

取g=10m/s2。

由题给数据可以得出

A.木板的质量为1kg

B.2s~4s内,力F的大小为0.4N

C.0~2s内,力F的大小保持不变

D.物块与木板之间的动摩擦因数为0.2

【答案】AB

【解析】结合两图像可判断出0~2s物块和木板还未发生相对滑动,它们之间的摩擦力

为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2~4s和4~5s列运动学方程,可解出质量m为1kg,2~4s内的力F为0.4N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误。

【例题3】(2019·河北省邢台市质检)一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为Ff,则此时箱子对地面的压力大小为(  )

图8

A.Mg+FfB.Mg-Ff

C.Mg+mgD.Mg-mg

【答案】 A

【解析】 环在竖直方向上受重力及箱子内的杆给它的竖直向上的摩擦力Ff,受力情况如图甲所示,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力Ff′,故箱子竖直方向上受重力Mg、地面对它的支持力FN及环给它的摩擦力Ff′,受力情况如图乙所示,由于箱子处于平衡状态,可得FN=Ff′+Mg=Ff+Mg.根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力,即FN′=Mg+Ff,故选项A正确.

题型二 超重与失重现象

1.对超重和失重的理解

(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.

(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.

(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.

(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.

2.判断超重和失重的方法

从受力的角度判断

当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态

从加速度的角度判断

当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态

从速度变化的角度判断

①物体向上加速或向下减速时,超重

②物体向下加速或向上减速时,失重

【例题1】(2018·四川省乐山市第二次调研)图甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10m/s2,根据图象分析可知(  )

A.人的重力为1500N

B.c点位置人处于失重状态

C.e点位置人处于超重状态

D.d点的加速度小于f点的加速度

【答案】 C

【解析】 开始时人处于平衡状态,人对传感器的压力是500N,根据平衡条件与牛顿第三定律可知,人的重力也是500N,故A错误;c点时人对传感器的压力大于其重力,处于超重状态,故B错误;e点时人对传感器的压力大于其重力,处于超重状态,故C正确;人在d点时:

a1=

m/s2=20m/s2,人在f点时:

a2=

m/s2=10m/s2,可知d点的加速度大于f点的加速度,故D错误.

【例题2】(2018·广东省深圳市三校模拟)如图,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0N,下底板的传感器显示的压力为10.0N.取g=10m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是(  )

A.匀加速上升,a=5m/s2

B.匀加速下降,a=5m/s2

C.匀速上升

D.静止状态

【答案】 B

【解析】 当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,对金属块受力分析,由牛顿第二定律知:

FN上+mg-FN下=ma,m=

kg=1kg,G=mg=10N

若上顶板传感器的示数是下底板传感器的示数的一半,由于弹簧压缩量不变,下底板传感器示数不变,仍为10N,则上顶板传感器的示数是5N.

对金属块,由牛顿第二定律知FN上′+mg-FN下′=ma′

解得a′=5m/s2,方向向下,故电梯以a=5m/s2的加速度匀加速下降,或以a=5m/s2的加速度匀减速上升.故A、C、D错误,B正确.

题型三 瞬时问题的两类模型

1.两种模型

加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:

2.解题思路

【例题2】(2019·河北省衡水中学第一次调研)如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为(  )

A.aA=aB=gB.aA=2g,aB=0

C.aA=

g,aB=0D.aA=2

g,aB=0

【答案】 D

【解析】 水平细线被剪断前对A、B进行受力分析如图所示,

静止时,FT=Fsin60°,Fcos60°=mAg+F1,F1=mBg,又mA=mB

解得FT=2

mAg

水平细线被剪断瞬间,FT消失,其他各力不变,A所受合力与FT等大反向,所以aA=

=2

g,aB=0.

【例题2】如图所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是(  )

A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零

B.细线被剪断的瞬间,A、B之间杆的弹力大小为零

C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为gsinθ

D.细线被剪断的瞬间,A、B之间杆的弹力大小为4mgsinθ

【答案】 CD

【解析】 剪断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,所受合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为3mgsinθ.剪断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得F-(m+2m)gsinθ=(m+2m)aAB,解得A、B两个小球的加速度为aAB=gsinθ,方向沿斜面向上,以B为研究对象,由牛顿第二定律得:

FAB-2mgsinθ=2maAB,解得杆的拉力为FAB=4mgsinθ,以C为研究对象,由牛顿第二定律得aC=gsinθ,方向沿斜面向下,故C、D正确,A、B错误.

题型四 动力学图象问题

1.常见的动力学图象

v-t图象、a-t图象、F-t图象、F-a图象等.

2.图象问题的类型

(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.

(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.

(3)由已知条件确定某物理量的变化图象.

3.解题策略

(1)分清图象的类别:

即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.

(2)注意图线中的一些特殊点所表示的物理意义:

图线与横、纵坐标的交点,图线的转折点,两图线的交点等.

(3)明确能从图象中获得哪些信息:

把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.

【例题1】(2018·全国卷Ⅰ)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态.现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动.用x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是(  )

【答案】 A

【解析】 设物块P静止时,弹簧的长度为x0,原长为l,则k(l-x0)=mg,物块P做匀加速直线运动时受重力mg、弹簧弹力k(l-x0-x)及力F,根据牛顿第二定律,得

F+k(l-x0-x)-mg=ma

故F=kx+ma.

根据数学知识知F-x图象是纵轴截距为ma的一次函数图象.

【例题2】(2019·福建省三明市质检)水平地面上质量为1kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图所示,已知物块在前2s内以4m/s的速度做匀速直线运动,取g=10m/s2,则(最大静摩擦力等于滑动摩擦力)(  )

A.物块与地面的动摩擦因数为0.2

B.3s末物块受到的摩擦力大小为3N

C.4s末物块受到的摩擦力大小为1N

D.5s末物块的加速度大小为3m/s2

【答案】 BC

【解析】 在0~2s内物块做匀速直线运动,则摩擦力Ff=3N,则μ=

=0.3,选项A错误;2s后物块做匀减速直线运动,加速度a=

m/s2=-2m/s2,则经过t=

=2s,即4s末速度减为零,则3s末物块受到的摩擦力大小为3N,4s末物块受到的摩擦力为静摩擦力,大小为6N-5N=1N,选项B、C正确;物块停止后,因两个力的差值小于最大静摩擦力,则物块不再运动,则5s末物块的加速度为零,选项D错误.

【例题3】(2018·安徽省池州市上学期期末)如图所示为质量m=75kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,则(  )

A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动

B.t=0时刻运动员的加速度大小为2m/s2

C.动摩擦因数μ为0.25

D.比例系数k为15kg/s

【答案】 C

【解析】 由v-t图象可知,滑雪运动员开始时做加速度减小的加速直线运动,最后做匀速运动,故A错误;在t=0时刻,图线切线的斜率即为该时刻的加速度,故有a0=

m/s2=4m/s2,故B错误;在t=0时刻开始加速时,v0=0,由牛顿第二定律可得mgsinθ-kv0-μmgcosθ=ma0,最后匀速时有:

vm=10m/s,a=0,由平衡条件可得mgsinθ-kvm-μmgcosθ=0,联立解得:

μ=0.25,k=30kg/s,故C正确,D错误.

题型五 动力学中的连接体问题

1.连接体的运动特点

轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.

轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.

轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.

2.处理连接体问题的方法

整体法的选取原则

若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量

隔离法的选取原则

若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解

整体法、隔离法的交替运用

若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”

【例题1】(2019·河南省郑州市质检)如图所示,在粗糙的水平面上,质量分别为m和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是(  )

A.若m>M,有x1=x2B.若m

C.若μ>sinθ,有x1>x2D.若μ

【答案】 AB

【解析】 在水平面上滑动时,对整体,根据牛顿第二定律,有

F-μ(m+M)g=(m+M)a1①

隔离物块A,根据牛顿第二定律,有

FT-μmg=ma1②

联立①②解得FT=

在斜面上滑动时,对整体,根据牛顿第二定律,有

F-(m+M)gsinθ=(m+M)a2④

隔离物块A,根据牛顿第二定律,有

FT′-mgsinθ=ma2⑤

联立④⑤解得FT′=

比较③⑥可知,弹簧弹力相等,与动摩擦因数和斜面的倾角无关,故A、B正确,C、D错误.

【例题2】(2019·辽宁省沈阳市高三三模)如图所示,水平桌面上放置一个倾角为45°的光

滑楔形滑块A,一细线的一端固定于楔形滑块A的顶端O处,细线另一端拴一质量为m=0.2

kg的小球。

若滑块与小球一起以加速度a向左做匀加速运动(取g=10m/s2)则下列说法正

确的是

A.当a=5m/s2时,滑块对球的支持力为

B.当a=15m/s2时,滑块对球的支持力为半

C.当a=5m/s2时,地面对A的支持力一定大于两个物体的重力之和

D.当a=15m/s2时,地面对A的支持力一定小于两个物体的重力之和

【答案】A

【解析】设加速度为a0时小球对滑块的压力等于零,对小球受力分析,受重力、拉力,根据牛顿第二定律,有:

水平方向:

F合=Fcos45°=ma0;竖直方向:

Fsin45°=mg,解得a0=g。

A、当a=5m/s2时,小球未离开滑块,水平方向:

Fcos45°–FNcos45°=ma;竖直方向:

Fsin45°+FNsin45°=mg,解得

,故A正确;B、当a=15m/s2时,小球已经离开滑块,只受重力和绳的拉力,滑块对球的支持力为零,故B错误;CD、当系统相对稳定后,竖直方向没有加速度,受力平衡,所以地面对A的支持力一定等于两个物体的重力之和,故C,D错误;故选A。

题型六 动力学两类基本问题

1.解题关键

(1)两类分析——物体的受力分析和物体的运动过程分析;

(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.

2.常用方法

(1)合成法

在物体受力个数较少(2个或3个)时一般采用合成法.

(2)正交分解法

若物体的受力个数较多(3个或3个以上)时,则采用正交分解法.

类型1 已知物体受力情况,分析物体运动情况

【例题1】(2018·河南省驻马店市第二次质检)如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F=100N而由静止向前滑行,其作用时间为t1=10s,撤除水平推力F后经过t2=15s,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,第二次利用滑雪杖对雪面的作用距离与第一次相同.已知该运动员连同装备的总质量为m=75kg,在整个运动过程中受到的滑动摩擦力大小恒为Ff=25N,求:

(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小;

(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.

【答案】 

(1)10m/s 50m 

(2)187.5m

【解析】 

(1)设运动员利用滑雪杖获得的加速度为a1

由牛顿第二定律F-Ff=ma1,得

a1=1m/s2

第一次利用滑雪杖对雪面作用获得的速度大小为v1=a1t1=10m/s

通过的位移为x1=

a1t12=50m

(2)运动员停止使用滑雪杖后,加速度大小为a2=

m/s2

经历时间t2速度变为v1′=v1-a2t2=5m/s

第二次利用滑雪杖获得的速度大小为v2,则v22-v1′2=2a1x1

第二次撤去水平推力后,滑行的最大距离x2=

联立解得x2=187.5m.

类型2 已知物体运动情况,分析物体受力情况

【例题2】(2019·安徽省蚌埠二中期中)如图所示,质量M=10kg的木楔ABC静置于粗糙水平地面上,木楔与地面间的动摩擦因数μ=0.2.在木楔的倾角θ为37°的斜面上,有一质量m=1.0kg的物块由静止开始从A点沿斜面下滑,当它在斜面上滑行距离x=1m时,其速度v=2m/s,在这过程中木楔没有动.(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2)求:

(1)物块与木楔间的动摩擦因数μ1;

(2)地面对木楔的摩擦力的大小和方向;

(3)在物块沿斜面下滑时,如果对物块施加一平行于斜面向下的推力F=5N,则地面对木楔的摩擦力如何变化?

(不要求写出分析、计算的过程)

【答案】 

(1)0.5 

(2)1.6N,水平向左 (3)地面对木楔的摩擦力的大小、方向均不变

【解析】 

(1)由v2=2ax,得a=2m/s2

对物块由牛顿第二定律有mgsinθ-μ1mgcosθ=ma,得μ1=0.5

(2)以物块和木楔ABC整体为研究对象,作出受力图如图.

(m+M)g-FN=may,Ff=max,ax=acosθ,ay=asinθ

解得:

FN=108.8N,Ff=1.6N

(3)对木楔来说物块加推力以后它受到物块的力没有任何变化,所以地面对木楔的摩擦力的大小、方向均不变.

题型七 动力学方法分析多运动过程问题

1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.

2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.

3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.

4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.

5.联立方程组,分析求解,对结果进行必要的验证或讨论.

【例题】(2018·山东省济宁市上学期期末)如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:

(1)物体上滑的最大位移;

(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)

【答案】 

(1)3m 

(2)0.42

【解析】 

(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:

mgsin37°=ma1

代入数据得:

a1=6m/s2

由运动学公式有:

v02=2a1x

联立解得物体上滑的最大位移为:

x=3m

(2)物体沿斜面上滑的时间为:

t1=

s=1s

物体沿斜面下滑的时间为:

t2=t-t1=1.5s

下滑过程中,由运动学公式有:

x=

a2t22

由牛顿第二定律可得:

mgsin37°-μmgcos37°=ma2

联立解得:

μ≈0.42

题型八 临界和极值问题

1.基本思路

(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);

(2)寻找过程中变化的物理量;

(3)探索物理量的变化规律;

(4)确定临界

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1