局部放电测试方法.docx
《局部放电测试方法.docx》由会员分享,可在线阅读,更多相关《局部放电测试方法.docx(6页珍藏版)》请在冰豆网上搜索。
局部放电测试方法
局部放电测试方法
局部放电测试方法
随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。
我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。
局部放电检测作为一种非破坏性试验,越来越得到人们的重视。
虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。
若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。
对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。
因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。
对电力设备进行局部放电测试是一项重要预防性试验。
根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。
总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。
一、电测法
局部放电最直接的现象即引起电极间的电荷移动。
每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。
另外,每次放电过程持续时间很短,在气隙中一次放电过程在10ns量级;在油隙中一次放电时间也只有1μs。
根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。
局部放电电检测法即是基于这两个原理。
常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。
1.脉冲电流法
脉冲电流法是一种应用最为广泛的局部放电测试方法。
脉冲电流法的基本测量回路见图3-5。
图中C
代表试品电容,Z
(Z
)代表测量阻抗,Ck代表耦合电容,它的作用是为Cx与Zm之间提供一个低阻抗的通道。
Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。
图3-5(a)为并联测量回路,试验电压U经Z施加于试品Cx,测量回路由Ck与Zm串联而成,并与Cx并联,因此称为并联测量回路。
试品上的局部放电脉冲经Ck耦合到Zm上,经放大器A送到测量仪器M。
这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。
图3-5(b)为串联测量回路,测量阻抗Zm串联接在试品Cx低压端与地之间,并经由Ck形成放电回路。
因此,试品的低压端必须与地绝缘。
图3-5(c)为桥式测量回路,又称平衡测量回路。
试品Cx与耦合电容Ck均与地绝缘,测量阻抗Zm与Zm分别接在Cx与Ck的低压端与地之间。
测量仪器M测量Zm与Zm’上的电压差。
图3-5测量局部放电的基本回路
2.无线电干扰电压法(RIV)
无线电干扰电压法,包括射频检测法,最早可追溯到1925年,Schwarger发现电晕放电会发射电磁波,通过无线电干扰电压表可以检测到局部放电的发生。
国外目前仍有采用无线电干扰电压表检测局部放电的运用,在国内,常用射频传感器检测放电,故又叫射频检测法。
较常用射频传感器有电容传感器、Rogowski线圈电流传感器和射频天线传感器等。
RIV方法能定性检测局部放电是否发生,甚至可以根据电磁信号的强弱对电机线棒和没有屏蔽层的长电缆进行局部放电定位;采用Rogowski线圈传感器也能定量检测放电强度,且测试频带较宽(1~30MHz)。
3.介质损耗分析法(DLA)
局部放电对绝缘材料的破坏作用是与局部放电消耗的能量直接相关的,因此对放电消耗功率的测量很早就引起人们的重视。
在大多数绝缘结构中,随着电压的升高,绝缘中气隙(或气泡)的数目将增加。
此外局部放电的现象将导致介质的损坏,从而使得tgδ大大增加。
因此可以通过测量tgδ的值来测量局部放电能量从而判断绝缘材料和结构的性能情况。
介质损耗分析法特别适用于测量低气压中存在的辉光或者亚辉光放电。
由于辉光放电不产生放电脉冲信号,而亚辉光放电的脉冲上升时间太长,普通的脉冲电流法检测装置中难以检测出来。
但这种放电消耗的能量很大,使得
tgδ很大,故只有采用电桥法检测
tgδ才能判断这种放电的状态和带来的危害。
但是,DLA方法只能定性的测量局部放电是否发生,基本不能检测局部放电量的大小,这限制了DLA方法的运用。
二、非电检测法
局部放电发生时,常伴有光、声、热等现象的发生,对此,局部放电检测技术中也相应出现了光测法、声测法、红外热测法等非电量检测方法。
较之电检测法,非电量检测方法具有抗电磁干扰能力强、与试样电容无关等优点。
1.超声波法测试局部放电
利用测超声波检测技术来测定局部放电的位置及放电程度,这种方法较简单,不受环境条件限制。
但灵敏度较低,不能直接定量。
在进行局部放电测量中当发现变压器有大于5000pc的故障放电,超声波声测量方法常用于放电部位确定及配合电测法的补充手段。
但声测法有它独特的优点,即它可在试品外壳表面不带电的任意部位安置传感器,可较准确地测定放电位置,且接收的信号与系统电源没有电的联系,不会受到电源系统的电信号的干扰;因此进行局部放电测量时,以电测法和声测法同时运用。
两种方法的优点互补,再配合一些信号处理分析手段,则可得到很好的测量效果。
局部放电测量通常选用密封结构的超声传感器,其结构原理见图3-6。
它是直接把压电陶瓷安装在金属外壳之上,带动外壳一起振动,并在金属壳里填充树脂作为密封。
图3-6超声传感器的原理结构图
1-金属外壳;2-陶瓷振动子;3-底座;4-填充树脂;5-引出脚
用超声探头获得由局部放电引起的超声信号,并用数字式局部放电仪或波形记录仪记录波形作定位测试。
声测法原理框图如图3-7所示。
图3-7声测法原理框图
如将1-4个声探头的信号同时记录下并在屏上显示所测到的波形,对局部放电作定位测量很有利。
当与电测法联合测量时,有助于判断所测到的信号是否为内部放电。
当仪器对变压器进行超声测量时,屏上按所
4.放电产物分析法
油纸绝缘材料在局部放电作用下会分解产生各种气体,分析局部放电时产生的化学生成物,例如用色谱分析仪测量高压电气设备的油中,由于放电产生的微量可燃性气体。
从而推断局部放电的程度,从而判断故障类型,已在生产实际中广泛应用,并取得较好的效果。
各种气体中对判断故障有价值的气体有甲烷(CH4)、乙烷(C2H6)、乙烯(C4H4)、乙炔(C2H2)、氢(H2)、一氧化碳(CO)、二氧化碳(CO2)等。
绝缘中存在局部放电时,当放电较小并在故障点引起的温度高于正常温度不多时,由油裂解的产物主要是甲烷和氧;当局部放电故障扩大,形成局部爬电或火花、电弧放电时,会引起局部高温,产生乙炔、乙烯和一氧化碳、二氧化碳。
如利用四种特征气体的三比值法,可用来判断变压器故障性质,但实际上对电力设备进行绝缘故障判断时,仅根据一次测量数据往往是不够的,宜利用色谱分析,观察各有害气体随时间的增量。
并和局部放电超声测量和电测法数据作比较,进行综合判断,才能更加有效地判断故障性质。
当故障涉及到固体绝缘时,会引起一氧化碳和二氧化碳含量的明显增长。
但根据现有统计资料,固体绝缘的正常老化过程与故障情况下劣化分解,表现在油中一氧化碳的含量上,一般情况下没有严格的界限;二氧化碳含量的规律更不明显。
因此,在考察这两种气体含量时更应注意结合具体变压器的结构特点,如油保护方式、运行温度、负荷情况、运行历史等情况加以分析,以尽可能得出正确的结论。