晶硅太阳能电池光致衰减问题讨论.docx

上传人:b****5 文档编号:11753484 上传时间:2023-03-31 格式:DOCX 页数:17 大小:29.42KB
下载 相关 举报
晶硅太阳能电池光致衰减问题讨论.docx_第1页
第1页 / 共17页
晶硅太阳能电池光致衰减问题讨论.docx_第2页
第2页 / 共17页
晶硅太阳能电池光致衰减问题讨论.docx_第3页
第3页 / 共17页
晶硅太阳能电池光致衰减问题讨论.docx_第4页
第4页 / 共17页
晶硅太阳能电池光致衰减问题讨论.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

晶硅太阳能电池光致衰减问题讨论.docx

《晶硅太阳能电池光致衰减问题讨论.docx》由会员分享,可在线阅读,更多相关《晶硅太阳能电池光致衰减问题讨论.docx(17页珍藏版)》请在冰豆网上搜索。

晶硅太阳能电池光致衰减问题讨论.docx

晶硅太阳能电池光致衰减问题讨论

本文由floljf贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择

TXT,或下载源文件到本机查看。

光伏组件输出功率光致衰减问题的讨论张光春陈如龙孙世龙李剑蒋仙温建军高瑞施正荣无锡尚德太阳能电力有限公司报告内容提要引言

(一)P型(掺硼晶体硅太阳电池初始光致衰减机理掺硼

(二)P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验掺硼晶体硅片少子寿命及太阳电

池光致衰减试验(三)光伏组件的初始光致衰减试验(四)光伏组件输出功率初

始衰减问题的解决方案2引言光伏组件输出功率的衰减可分为两个阶段:

光伏组

件输出功率的衰减可分为两个阶段:

第一个阶段,我们可以把它称作初始的光致衰减,第一个阶段即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅

度的下降,但随后趋于稳定。

导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。

第二个阶段,我们可以把它称作组件的老化衰减,第二个阶段即在长期使用中出现的极缓慢的功率下降,产生的主要原因

与电池缓慢衰减有关,也与封装材料的性能退化有关。

3引言为什么光致衰减现象又被关注:

P型(掺硼的太阳电池的光致衰减现象是在七十年代发现的,为什么近期光伏产业界和研究机构又对此产生了较大的关注呢?

其主要原因是由于光致衰减导致的一些光伏组件的功率下降幅度远远超出了客户所能接受的范围,这就使组件制造商面临着潜在的赔偿风险。

4引言导致光伏组件功率出现早期下降的主要原因有:

(一)硅片质量差,导致电池出现较大幅度的初始光致5衰减;

(二)组件制造工艺不合理,出现诸如电池片隐裂、EVA交联度不好、脱层、焊

接不良等质量问题.(三)些组件制造商功率测试不准确或有意在输出功率上虚

报。

一.P型(掺硼晶体硅太阳电池初始光致衰减机理30多年前,H.FischerandW.Pschunder等人首次观察到P型(掺硼)晶体硅太阳电池的初始光致衰减现象.6

一.P型(掺硼晶体硅太阳电池初始光致衰减机理大家基本一致的看法是:

大家基本一致的看法是:

光照或电流注入导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,引起电池转换效率下降,但经过退火处理,少子寿命又可被恢复,其可能的反应为:

7光照或电流注入Bs+Bs+2Oi少子寿命高)(少子寿命高)退火处理BsO2i少子寿命低)(少子寿命低)一.P型(掺硼晶体硅太阳电池初始光致衰

减机理8据文献中报道:

据文献中报道

(一)含有硼和氧的硅片经过光照后出现不同程度的衰减(如图2、图3、图4所示)。

硅片中的硼、氧含量越大,在光照或电流注入条件下产生的硼氧复合体越多,少子寿命降低的幅度就越大。

(二)在低氧、掺傢、掺磷的硅片中少子寿命随光照时间的衰减幅度极小。

一.P

型(掺硼晶体硅太阳电池初始光致衰减机理9图2低氧掺硼、有氧掺磷、有氧掺硼的Fz硅片和有氧掺硼Cz硅片少子寿命衰减随光照时间的关系(2一.P型(掺硼晶体硅太阳电池初始光致衰减机理10图3掺硼、掺傢、掺磷的Cz硅片和硼掺杂的MCZ硅光照前后少数载流子寿命的变化(3一.P型(掺硼晶体硅太阳电池初始光致衰减机理11图4不同硼掺杂浓度硅片的少子寿命随时间的变化关系(4掺硼晶体硅

片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验

(一)P型(掺硼)单/多晶硅片少子寿命的光致衰减试验1•原始硅片

的光致衰减试验硅片不做任何处理,测试光照前和光照后的少子寿命。

12试验结

论:

从图5可以看出,单/多晶裸硅片若不经过清洗钝化,其少子寿命几乎随着光

照时间变化不大,这是因为硅片表面复合中心占主导地位,掩盖了光照对体少子寿命的影响,因此对不经过清洗、钝化的裸硅片,无法确定少子寿命与光照时间

的对应关系,也就无法判断硅片的质量.单晶裸硅片的少子寿命随时间的衰减图1.2多晶裸硅片的少子寿命随时间的衰减图1.21.01.00.80.8少子寿命us少子寿命us0.60.6M10.4M2M30.4M1M2M30.20.20.00.0010min30min1h时间H2h3h4h010min30min1h时间H2h3h4h图5未经清洗、钝化的单/多晶裸硅片少子寿命随时间的变化关系掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型

(掺硼晶体硅片少子寿命及太阳电池光致衰减试验132•表面钝化硅片的光致衰减

试验去除硅片损伤层+硅片清洁+硅片表面钝化(碘酒),测试光照前和光照后的少子寿命。

试验结论:

试验结论:

140钝化后单晶硅片少子寿命和光照时间的关系40钝化后多晶硅片少子寿命衰减和时间的关系样品1样品135钝化后硅片的表

面复合已不占主要地位,占主要地位,而以体内复合为主,为主,且硅片的体少子寿命随光照而衰减。

随光照而衰减。

不同质量的材

料在光照之后其少子寿命衰减幅度有较大差别,衰减幅度有较大差别,由此

基本可以预测出用此硅片制作的电池的初始光致衰减的程度以及可达到的最高电

池转换效率。

转换效率。

120样品2100样品2样品3样品3少子寿命us010min30min时间1h2h3h4h6h30少子寿命us2580206015401020500010min30min1h时间2h3h4h6h图6清洗、钝化后单/多晶硅片少子寿命和光照时间的关系掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿

命及太阳电池光致衰减试验3.表面钝化硅片的光致衰减及退火恢复试验将这些

光照衰减后的硅片进行退火处理,硅片的寿命得到很大程度的恢复。

这和文献中

的报道是一致的,如图7所示。

单晶硅片光照少子寿命恢复14403530少子寿命

(us)2520151050光照前光照后硅片1硅片2硅片3退火后图7单晶硅片少子寿命经过退火后恢复掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型

(掺硼晶体硅片少子寿命及太阳电池光致衰减试验15

(二).P型(掺硼)单/多晶

硅太阳电池的初始光致衰减试验1.未封装的单晶硅单体太阳电池的初始光致衰减试验单晶电池片光照前后I-V曲线6单晶电池片光照前后电池I-V曲线65544电流I电流I321000.20.4电压V0.60.8光照前光照后3光照前21000.20.4电压V0.60.8光照后图10单晶(相对衰减0.8%)电池I-V曲线图8单晶电池(相对衰减5.7%)I-V曲线掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验2.未封装的多晶硅单体

太阳电池的初始光致衰减试验多晶电池片光照前后I-V曲线6多晶电池片光照前后I-V曲线166554电流I4电流I321000.20.4电压V0.60.8光照前光照后光照前321000.20.4电压V0.60.8光照后图11多晶(相对衰减0.2%)的电池I-V曲线图9多晶电池(相对衰减3.64%)的I-V曲线掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验3.光照前后电池片的量子效率对比光照后,长波响应变差,这表明光照后电池片体内的少子寿命已发生了衰减。

光照前后电池片的量子效率对比1.00.90.80.7IQE&EQE0.60.50.40.30.20.10.030040050060070(波长(nm80090010001100衰减前EQE衰减前IQE衰减后EQE衰减后IQE

17掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验4.电池片光照后的退火处理选取不同衰减程度的电池片进行退火处理,效率也得到很大程度的恢复,这和文献中的报道一致。

单晶电池片效率衰减恢复图17.016.516.0电池效率(%)15.515.014.514.013.5光照前光照后退火后样品1样品2样品318当前硅片质量的状况:

1•主流电池片的相对衰减:

单晶电池片不超过主流电池片的相对衰减:

1%,多晶电池片不超过0.5%0.5%。

1%,多晶电池片不超过0.5%。

某些质量很差的硅片做成电池后,2•某些质量很差的硅片做成电池后,其相对衰减接近6单晶)4%(多

晶),),这些衰减接近6%(单晶)和4%(多晶),这些衰减大的电池片是需要我们关注的。

减大的电池片是需要我们关注的。

个别质量特别差的硅片做成电池后,3.个别质量特别差的硅片做成电池后,其相对衰减超过1010%单

晶),),对这种特别超过10%(单晶),对这种特别差的材料进行理化分析,发现其中的硼、行理化分析,发现其中的硼、磷等杂质含量都是严重超标。

都是严重超标。

三•光伏组件的初始光致衰减试验20光伏组件的核心组成部分就是太阳电池,如果太阳电池的性能发生率减,就必然导致光伏组件的输出功率下

降,并极易在组件中引起热斑.?

若电池串与串之间电流不一致,在接了旁路二极管的组件特性曲线上可看到台阶曲线”。

?

通过测量光照前后组件的输出特性曲线和红外成像分析,可以考察组件的初始光致率减现象.三•光伏组件的初始光致衰

减试验

(一)正常组件的输出特性曲线及红外成像21图13正常组件的IV特性曲

线图14正常组件的红外成像(温度相差仅14C)三•光伏组件的初始光致衰减试验

(二)组件光照后,输出特性曲线及红外成像a.如果电池的衰减基本一致,

尽管输出功率下降,但I-V曲线还是正常的,也无热斑出现,其曲线和红外图像与正常组件类似。

b.如果电池的衰减不一致,将导致I—V曲线出现台阶,如图15所示22图15小台阶大台阶三•光伏组件的初始光致衰减试验c.有热斑组件的红外成像对于出现台阶曲线的组件用红外成像检查,可发现有些组件出现热斑,如图16所示:

这种热斑的温度与周围电池的温度相差较大,过热的区域可引起

EVA加快老化变黄,使该区域透光率下降,从而使热斑进一步恶化,导致组件的

早期失效。

23异常组件的红外成像,出现热

斑(温度相差11.3C)图16异常组件的红外成像,出现热斑(温度相差C

案例分析我们对某硅片供应商提供的一批质量极差的硅片进行了全过程的跟踪试验,将转换效率为16.%的电池片,经弱光光照1.5小时后(光源为节能灯11WX

40只,发现电池片转换效率大幅衰减,且离散性也很大,效率最高的为15.4%,

最低的仅为13%,如图17所示。

360330300270240210180150120906030032927628027924数量1801961229961475344715.415.21514.814.614.414.214转换效率13.813.613.413.213图17质量极差的硅片做成的电池片,弱光光照后效率分布图案例分析将光照后的电池重新检测分档,按转换效率的分布情况做成14块组件,组件经太阳光光照后的功率又进一步下降,如图18所示:

25结

论;结论;1•光照强度影响组件功率的衰减幅度.幅度.2•尽管普通的节能灯没有使该电池片衰减到稳定的程度,池片衰减到稳定的程度,但是通过光照

后二次分选剔出了效率衰减大的电池片,池片,使每个组件内电池片性能基本一致。

对这类电池,一致。

对这类电池,如果不经过光照和二次分选而直接做成组件,和二次分选而直接做成组件,那些衰减较为严重的电池片,减较为严重的电

池片,会分散在各个组件内,组件内,导致组件的整体功率下降更并将引起组件曲线异常和热斑。

多,并将引起组件曲线异常和热斑。

3•这批电池转换效率衰

减幅度在10%到24%之间之间!

10%到24%之间!

165160155151.38155.10153.29

150.08148.13145.62145.93147.95149.29151.37151.55158.71157.17153.26152.95160.07155.00155.71162.01原始测试数据日照1天后数据日照2天后数据功率(W150143.78144.5414514013513014.2%14.4%14.6%14.8%换效率15.0%15.2%15.4%四•光伏组件输出功率初始衰减的解决方案26太阳电池性能的初始

光致衰减现象主要发生在单晶硅太阳电池上,对于多晶硅太阳电池来讲,其转换效

率的初始光致衰减幅度就很小。

由此可见硅片自身的性质决定了太阳电池性能的

初始光致衰减程度。

因此要解决光伏组件的初始光致衰减问题,就必须从解决硅片问题入手,下面就几个方案进行讨论。

四•光伏组件输出功率初始衰减的解决方案27

(一)改进掺硼P型直拉单晶硅棒的质量在国内,掺硼P型直拉单晶是目前硅棒市场的主流产品,单晶棒的质量确实令人担忧,单晶棒制造商必须认真对

待这个问题•其实直拉单晶工艺是很成熟的,只要我们把好用料质量关,按正规

拉棒工艺生产,硅棒的质量是可以得到较好控制的。

建议如下:

1.避免使

用低质量的多晶硅料2.严格控制掺入过多低电阻率N型硅料,如IC的废N型硅片等,避免生产高补偿的P型单晶棒,这种硅棒,尽管电阻率合适,但硼-氧浓度

非常高,将导致太阳电池性能出现较大幅度的初始光致衰减.3.提高拉棒工

艺,减少晶体硅中氧含量,降低内应力,降低缺陷密度,改进电阻率的均匀性。

四.光伏组件输出功率初始衰减的解决方案28

(二)利用磁控直拉硅单晶工艺

(MCZ)改进单晶硅棒产品质量此工艺不仅能控制单晶硅中的氧浓度,也使硅单晶纵向、径向电阻率均匀性得到改善,这种工艺已在国内部分拉棒公司开始试

用。

四.光伏组件输出功率初始衰减的解决方案29(三)利用区熔单晶硅工艺

(FZ)改进单晶硅棒产利用区熔单晶硅工艺(FZ)区熔单晶硅工艺品质量区熔单晶硅工艺避免了直拉工艺中大量氧进入硅晶体的固有缺陷,从而彻底解决了P型(掺硼)太阳电池的初始光致衰减现象。

因FZ工艺成本较高,主要用于IC和其它半导体器件的硅片制造,但目前已有公司对FZ工艺进行相关改造,降低了成本,可适合于太阳电池硅片的制造。

国内有技术实力的拉棒公司已开展了这方面

的试制工作.四.光伏组件输出功率初始衰减的解决方案30(四)改变掺杂剂,用镓代替硼改变掺杂剂,用掺镓的硅片制作的电池,没有发现太阳电池的初始光致衰减现象,(见图3),因此改掺硼为掺傢,也是解决太阳电池初始光致衰减的办法之一,国内技术力量强的企业已在开始做这方面的工作。

四.光伏组件输出功率初始衰减的解决方案31(五)使用掺磷的N型硅片代替掺硼的P型硅片使用掺磷的N型硅片代替掺硼的P使用N型硅片也是解决电池初试光致衰减问题的方法之一,但从目前产业化的丝网印刷P型电池工艺来看,N型电池在转换效率和制造成本上还没有优势,一些关键工艺还有待解决•四.光伏组件输出功率初始衰减的解决方案32(六)提高硅片的加工水平,改进硅片性能的一致性.提高硅片的加工

水平,改进硅片性能的一致性.硅片质量的改进主要是提高少子寿命,上面讨论的方案就是主要涉及少子寿命的改进,除此之外,还有一些因素影响硅片的质

量,如电阻率的均匀性,TV,TTV,几何尺寸,内应力,表面清洁度,锯痕等。

建议硅片制造公司使用硅片分选机,将不同的硅片分类,向客户提供性能质量一致

的产品。

四.光伏组件输出功率初始衰减的解决方案(七)从电池效

率分布看硅片性能的一致性.太阳电池制造商不可能在来料抽检过程中发现硅片的全部质量问题,但可以通过对每批电池效率的统计分析考察每批硅片质量的一致性程度。

33图19电池效率分布,分布不对称,低档电池比例大图20电池效

率分布,出现两个峰值四•光伏组件输出功率初始衰减的解决方案34(八)加强硅片质量的监督在目前,太阳能级硅片的质量几乎处于无人监管的状态,好坏由客

户自己评价。

我们建议国家尽快制定出相关产品标准,建立质量监督机制,使我国的硅片加工产业健康持续发展。

四•光伏组件输出功率初始衰减的解决方案35(九对电池片进行先前光照衰减?

由于光伏组件的初始光致衰减是由电池的初始光致衰减导致的,对电池片进行先前的光照,使电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就非常小了,完全可以控制在测量误差之内。

同时也大幅度地减少了光伏组件出现热斑的几率,提高了光伏组件的输出稳定性,为我们

的用户带来更多的效益。

尽管先前光照衰减是一种亡羊补牢的方法,但在硅片质量没有得到有效的改善之前,使用此方法是解决光伏组件初始光致衰减问题有效

措施。

在尚德公司,先前光照衰减的试验工作已完成,规模化的光照衰减设备将陆续到位用于生产。

36请产业链上的每位同仁高度重视自己的产品质量,只有大家齐心协力,才能使光伏产业健康持续稳定地发展.质量是企业的生命,他掌握在你自己的手中!

THANKYOU谢谢1本文由floljf贡献ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

光伏组件输出

功率光致衰减问题的讨论张光春陈如龙孙世龙李剑蒋仙温建军高瑞施正荣无锡尚德太阳能电力有限公司报告内容提要引言

(一)P型(掺硼晶体硅太阳电池初始光致衰减机理掺硼

(二)P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验掺硼晶体硅片少子寿命及太阳电池光致衰减试验(三)光伏组件的初始光致衰减

试验(四)光伏组件输出功率初始衰减问题的解决方案2引言光伏组件输出功率

的衰减可分为两个阶段:

光伏组件输出功率的衰减可分为两个阶段:

第一个阶

段,我们可以把它称作初始的光致衰减,第一个阶段即光伏组件的输出功率在刚

开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。

导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。

第二个阶段,我们可以把它称

作组件的老化衰减,第二个阶段即在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。

3引言为

什么光致衰减现象又被关注:

P型(掺硼的太阳电池的光致衰减现象是在七十年代

发现的,为什么近期光伏产业界和研究机构又对此产生了较大的关注呢?

其主要

原因是由于光致衰减导致的一些光伏组件的功率下降幅度远远超出了客户所能接

受的范围,这就使组件制造商面临着潜在的赔偿风险。

4引言导致光伏组件功率出现早期下降的主要原因有:

(一)硅片质量差,导致电池出现较大幅度的初始

光致5衰减;

(二)组件制造工艺不合理,出现诸如电池片隐裂、EVA交联度不

好、脱层、焊接不良等质量问题.(三)些组件制造商功率测试不准确或有意在

输出功率上虚报。

一.P型(掺硼晶体硅太阳电池初始光致衰减机理30多年前,H.FischerandW.Pschunde等人首次观察到P型(掺硼)晶体硅太阳电池的初始光致衰减现象.6一.P型(掺硼晶体硅太阳电池初始光致衰减机理大家基本一致的看法是:

大家基本一致的看法是:

光照或电流注入导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,引起电池转换效率下降,但经过退火处理,少子寿命又可被恢复,其可能的反应为:

7光照或电流注入Bs+Bs+2Oi少子寿命高)(少子寿命高)退火处理BsO2i少子寿命低)(少子寿命低)一.P型(掺硼晶体硅太阳电池初始光致衰减机理8据文献中报道:

据文献中报道

(一)含有硼和氧的硅片经过光照后出现不同程度的衰减(如图2、图3、图4所示)。

硅片中的硼、氧含量越大,在光照或电流注入条件下产生的硼氧复合体越多,少子寿命降低的幅度就越大。

(二)在低氧、掺镓、掺磷的硅片中少子寿命随光照时间的衰减

幅度极小。

一.P型(掺硼晶体硅太阳电池初始光致衰减机理9图2低氧掺硼、有氧掺磷、有氧掺硼的Fz硅片和有氧掺硼Cz硅片少子寿命衰减随光照时间的关系(2一.P型(掺硼晶体硅太阳电池初始光致衰减机理10图3掺硼、掺傢、掺磷的Cz硅片和硼掺杂的MCZ硅光照前后少数载流子寿命的变化(3一.P型(掺硼晶体硅太阳电池初始光致衰减机理11图4不同硼掺杂浓度硅片的少子寿命随时间的变化关系(4掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验

(一)P型(掺硼)单/多晶硅片少子寿命的光致衰减试

验1.原始硅片的光致衰减试验硅片不做任何处理,测试光照前和光照后的少子寿命。

12试验结论:

从图5可以看出,单/多晶裸硅片若不经过清洗钝化,其少子寿命几乎随着光照时间变化不大,这是因为硅片表面复合中心占主导地位,掩盖了光照对体少子寿命的影响,因此对不经过清洗、钝化的裸硅片,无法

确定少子寿命与光照时间的对应关系,也就无法判断硅片的质量.单晶裸硅片的少子寿命随时间的衰减图1.2多晶裸硅片的少子寿命随时间的衰减图1.21.01.00.8

0.8少子寿命us少子寿命us0.60.6M10.4M2M30.4M1M2M30.20.20.00.0010min30min1h时间H2h3h4h010min30min1h时间H2h3h4h图5未经清洗、钝化的单/多晶裸硅片少子寿命随时间的变化关系掺硼晶体硅片少子寿命及太阳电

池光致衰减试验二.P型(掺硼晶体硅片少子寿命及太阳电池光致衰减试验13

2.表面钝化硅片的光致衰减试验去除硅片损伤层+硅片清洁+硅片表面钝化(碘酒),测试光照前和光照后的少子寿命。

试验结论:

试验结论:

140钝化后单晶

硅片少子寿命和光照时间的关系40钝化后多晶硅片少子寿命衰减和时间的关系样

品1样品135钝化后硅片的表面复合已不占主要地位,占主要地位,而以体内复合为主,为主,且硅片的体少子寿命随光照而衰减。

随光照而衰减。

不同质量的材料在光照之后其少子寿命衰减幅度有较大差别,衰减幅度有较大差别,由此基

本可以预测出用此硅片制作的电池的初始光致衰减的程度以及可达到的最高电池转换效率。

转换效率。

120样品2100样品2样品3样品3少子寿命us010min30min时间1h2h3h4h6h30少子寿命us2580206015401020500010min30min1h时间2h3h4h6h图6清洗、钝化后单/多晶硅片少子寿命和光照时间的关系掺硼晶体硅片少子寿命及太阳电池光致衰减试验二.P型(掺硼晶体硅片少子寿命及

太阳电池光致衰减试验3.表面钝化硅片的光致衰减及退火恢复试验将这些光照

衰减后的硅片进行退火处理,硅片的寿命得到很大程度的恢复。

这和文献中的报

道是一致的,如图7所示。

单晶硅片光照少子寿命恢复14403530少子寿命

(us)2520151050光照前光照后硅片1硅片2硅片3退火后图7单晶硅片少子寿命经过

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 简洁抽象

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1