高三理科数学复习教案数列总复习.docx

上传人:b****3 文档编号:1160979 上传时间:2022-10-18 格式:DOCX 页数:14 大小:26.84KB
下载 相关 举报
高三理科数学复习教案数列总复习.docx_第1页
第1页 / 共14页
高三理科数学复习教案数列总复习.docx_第2页
第2页 / 共14页
高三理科数学复习教案数列总复习.docx_第3页
第3页 / 共14页
高三理科数学复习教案数列总复习.docx_第4页
第4页 / 共14页
高三理科数学复习教案数列总复习.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

高三理科数学复习教案数列总复习.docx

《高三理科数学复习教案数列总复习.docx》由会员分享,可在线阅读,更多相关《高三理科数学复习教案数列总复习.docx(14页珍藏版)》请在冰豆网上搜索。

高三理科数学复习教案数列总复习.docx

高三理科数学复习教案数列总复习

高三理科数学复习教案:

数列总复习

  】】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:

高三理科数学复习教案:

数列总复习希望能为您的提供到帮助。

本文题目:

高三理科数学复习教案:

数列总复习

高考导航

考试要求重难点击命题展望

1.数列的概念和简单表示法?

(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);?

(2)了解数列是自变量为正整数的一类函数.?

2.等差数列、等比数列?

(1)理解等差数列、等比数列的概念;?

(2)掌握等差数列、等比数列的通项公式与前n项和公式;?

(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?

(4)了解等差数列与一次函数、等比数列与指数函数的关系.本章重点:

1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;

2.注重提炼一些重要的思想和方法,如:

观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?

本章难点:

1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用.仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.

知识网络

6.1数列的概念与简单表示法

典例精析

题型一归纳、猜想法求数列通项

【例1】根据下列数列的前几项,分别写出它们的一个通项公式:

(1)7,77,777,7777,

(2)23,-415,635,-863,

(3)1,3,3,5,5,7,7,9,9,

【解析】

(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),

故an=79(10n-1).

(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57,,(2n-1)(2n+1),故数列的通项公式可写成an=(-1)n+1.

(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.

故数列的通项公式为an=n+.

【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.

【变式训练1】如下表定义函数f(x):

x12345

f(x)54312

对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2008的值是()

A.1B.2C.3D.4

【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an.

所以a2008=a4=2,故选B.

题型二应用an=求数列通项

【例2】已知数列{an}的前n项和Sn,分别求其通项公式:

(1)Sn=3n-2;

(2)Sn=18(an+2)2(an0).

【解析】

(1)当n=1时,a1=S1=31-2=1,

当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,

又a1=1不适合上式,

故an=

(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,

当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,

所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,

又an0,所以an-an-1=4,

可知{an}为等差数列,公差为4,

所以an=a1+(n-1)d=2+(n-1)4=4n-2,

a1=2也适合上式,故an=4n-2.

【点拨】本例的关键是应用an=求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.

【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()

A.2n-1B.(n+1n)n-1C.n2D.n

【解析】由an=n(an+1-an)an+1an=n+1n.

所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D.

题型三利用递推关系求数列的通项

【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:

(1)an+1=an1+2an;

(2)an+1=2an+2n+1.

【解析】

(1)因为对于一切nN*,an0,

因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.

所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.

(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1.

所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.

【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.

【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.

【解析】因为数列{an}是首项为1的正项数列,

所以anan+10,所以(n+1)an+1an-nanan+1+1=0,

令an+1an=t,所以(n+1)t2+t-n=0,

所以[(n+1)t-n](t+1)=0,

得t=nn+1或t=-1(舍去),即an+1an=nn+1.

所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n.

总结提高

1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.

2.由Sn求an时,要分n=1和n2两种情况.

3.给出Sn与an的递推关系,要求an,常用思路是:

一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.

6.2等差数列

典例精析

题型一等差数列的判定与基本运算

【例1】已知数列{an}前n项和Sn=n2-9n.

(1)求证:

{an}为等差数列;

(2)记数列{|an|}的前n项和为Tn,求Tn的表达式.

【解析】

(1)证明:

n=1时,a1=S1=-8,

当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,

当n=1时,也适合该式,所以an=2n-10(nN*).

当n2时,an-an-1=2,所以{an}为等差数列.

(2)因为n5时,an0,n6时,an0.

所以当n5时,Tn=-Sn=9n-n2,

当n6时,Tn=a1+a2++a5+a6++an

=-a1-a2--a5+a6+a7++an

=Sn-2S5=n2-9n-2(-20)=n2-9n+40,

所以,

【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.

【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn=,则数列{bn}()

A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列

C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列

【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.

所以a1+10d=2,即a11=2.所以bn==22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.

题型二公式的应用

【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.

(1)求公差d的取值范围;

(2)指出S1,S2,,S12中哪一个值最大,并说明理由.

【解析】

(1)依题意,有

S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,

由a3=12,得a1=12-2d.③

将③分别代入①②式,得

所以-247

(2)方法一:

由d0可知a1a3a13,

因此,若在112中存在自然数n,使得an0,an+10,

则Sn就是S1,S2,,S12中的最大值.

由于S12=6(a6+a7)0,S13=13a70,

即a6+a70,a70,因此a60,a70,

故在S1,S2,,S12中,S6的值最大.

方法二:

由d0可知a1a3a13,

因此,若在112中存在自然数n,使得an0,an+10,

则Sn就是S1,S2,,S12中的最大值.

故在S1,S2,,S12中,S6的值最大.

【变式训练2】在等差数列{an}中,公差d0,a2008,a2009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.

【解析】由题意知又因为公差d0,所以a20080,a20090.当

n=4015时,S4015=a1+a401524015=a20084015当n=4016时,S4016=a1+a401624016=a2008+a2009240160.所以满足条件Sn0的最大自然数n=4015.

题型三性质的应用

【例3】某地区2019年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.

(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;

(2)该地区9月份(共30天)该病毒新感染者共有多少人?

【解析】

(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.

所以9月10日的新感染者人数为40+(10-1)40=400(人).

所以9月11日的新感染者人数为400-10=390(人).

(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2200(人),

9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.

所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5900(人).

所以该地区9月份流感病毒的新感染者共有2200+5900=8100(人).

【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为

【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,

所以5+3d23+d,即5+3d6+2d,所以d1,

所以a43+1=4,故a4的最大值为4.

总结提高

1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.

2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.

3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1