Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

上传人:b****8 文档编号:11041532 上传时间:2023-02-24 格式:DOCX 页数:20 大小:802.37KB
下载 相关 举报
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第1页
第1页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第2页
第2页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第3页
第3页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第4页
第4页 / 共20页
Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

《Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx》由会员分享,可在线阅读,更多相关《Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx(20页珍藏版)》请在冰豆网上搜索。

Application of Topology Size and Shape Optimization Methods in Polymer Metal Hybrid Structural.docx

ApplicationofTopologySizeandShapeOptimizationMethodsinPolymerMetalHybridStructural

ApplicationofTopology,SizeandShapeOptimizationMethodsinPolymerMetalHybridStructuralLightweightEngineering

Abstract

Applicationoftheengineeringdesignoptimizationmethodsandtoolstothedesignofautomotivebody-in-white(BIW)structuralcomponentsmadeofpolymermetalhybrid(PMH)materialsisconsidered.Specifically,theuseoftopologyoptimizationinidentifyingtheoptimalinitialdesignsandtheuseofsizeandshapeoptimizationtechniquesindefiningthefinaldesignsisdiscussed.TheoptimizationanalysesemployedwererequiredtoaccountforthefactthattheBIWstructuralPMHcomponentinquestionmaybesubjectedtodifferentin-serviceloadsbedesignedforstiffness,strengthorbucklingresistanceandthatitmustbemanufacturableusingconventionalinjectionover-molding.Thepaperdemonstratestheuseofvariousengineeringtools,i.e.aCADprogramtocreatethesolidmodelofthePMHcomponent,ameshingprogramtoensuremeshmatchingacrossthepolymer/metalinterfaces,alinear–staticanalysisbasedtopologyoptimizationtooltogenerateaninitialdesign,anonlinearstatics-basedsizeandshapeoptimizationprogramtoobtainedthefinaldesignandamold-fillingsimulationtooltovalidatemanufacturabilityofthePMHcomponent.

Keywords

Topology,Optimization,HybridStructural,LightweightEngineering

1.Introduction

Lightweightengineeringforautomobilesisprogressivelygaininginimportanceinviewofrisingenvironmentaldemandsandever-tougheremissionsstandards.Currenteffortsintheautomotivelightweightengineeringinvolveatleastthefollowingfivedistinctapproaches[1]:

(a)Requirementlightweightengineeringwhichincludeseffortstoreducethevehicleweightthroughreductionsincomponent/subsystemrequirements(e.g.areducedrequiredsizeofthefueltank);(b)Conceptuallightweightengineeringwhichincludesthedevelopmentandimplementationofnewconceptsandstrategieswithpotentialweightsavingssuchastheuseofaself-supportingcockpit,astraightenginecarrier,etc.;(c)Designlightweightengineeringwhichfocusesondesignoptimizationoftheexistingcomponentsandsub-systemssuchastheuseofribsandcomplexcrosssectionsforenhancedcomponentstiffnessatareducedweight;(d)Manufacturinglightweightengineeringwhichutilizesnovelmanufacturingapproachestoreducethecomponentweightwhileretainingitsperformance(e.g.acombinedapplicationofspotweldingandadhesivebondingtomaintainthestiffnessofthejoinedsheet-metalcomponentswithreducedwallthickness);and(e)Materiallightweightengineeringwhichisbasedontheuseofmaterialswithahighspecificstiffnessand/orstrengthsuchasaluminumalloysandpolymer-matrixcompositesorasynergisticuseofmetallicandpolymericmaterialsinahybridarchitecture(referredtoaspolymermetalhybrids,PMHs,intheremainderofthismanuscript).Inthepresentwork,theproblemofintegrationoftheengineeringoptimizationmethodsandtoolsintotheaforementionedlightweightengineeringefforts,specificallyintoPMHtechnologyforbody-in-white(BIW)load-bearingautomotivecomponentsprocessedbytechniquessuchasinjectionover-molding[2]ormetalover-molding[3].Suchcomponentsaretypicallydesignedforstiffnessandbucklingresistanceandtheirperformanceisgreatlyaffectedbythedesignoftheplasticribbingstructureinjectionmoldedintoasheet-metalstamping.

Inconventionalautomotivemanufacturingpractice,metalsandplasticsarefiercecompetitors.ThePMHtechnologies,incontrast,aspiretotakefulladvantageofthetwoclassesofmaterialsbycombiningtheminasinglecomponent/sub-assembly.Thefirstexampleofasuccessfulimplementationofthistechnologicalinnovationinpracticewasreportedattheendof1996,whenthefrontendoftheAudiA6(madebyEcia,Audincourt/France)wasproducedasahybridstructure,combiningsheetsteelwithelastomer-modifiedpoly-amidePA6-GF30(DurethanBKV130fromBayer).Akeyfeatureofhybridstructuresisthatthematerialsemployedcomplementeachothersothattheresultinghybridmaterialcanofferanenhancedoverallstructuralperformance.

Currently,PMHsarereplacingall-metalstructuresinautomotivefront-endmodulesatanacceleratedrateandarebeingusedininstrument-panelandbumpercross-beams,doormodules,andtailgatesapplications.Moreover,newPMHtechnologiesarebeing

introduced.

ThemainPMHtechnologiescurrentlybeingemployedintheautomotiveindustrycanbegroupedintothreemajorcategories:

(a)Injectionover-moldingtechnologies[2];(b)Metal-over-moldingtechnologiescombinedwithsecondaryjoiningoperations[3];and(c)Adhesively-bondedPMHs[4].AdetaileddescriptionforeachofthesegroupsofPMHmanufacturingtechnologiescanbefoundinourrecentwork[5].

Theobjectiveofthepresentworkistoextendtheaforementionedtwo-stepoptimizationapproachtoBIWloadbearingPMHcomponents.Atypicalall-metalBIWloadbearingcomponent,Figure1(a),consistsoftwoflangedU-shapestampingsjoinedalongtheirmatchingflangesbyspot-welding(oftencomplementedbyadhesivebonding).Whensuchanall-metalcomponentisreplacedwithaPMHcomponent,Figure1(b),oneofitsstampingsisremovedandtheexterioroftheremainingstampingreinforcedusinganinjection-moldedthermoplasticrib-likestructure.Hence,theobjectiveofthepresentworkistoaddresstheoptimalarchitectureoftheribbingstructurewithrespecttodifferentloadingrequirements(axialcompression,bending,twisting)anddifferentdesignrequirements(e.g.stiffness,strength,bucklingresistance).Theexamplesconsideredshowhowtopologyoptimizationmaybeusedtosuggestgoodinitialdesigns,butalsodemonstrateshowatopologyoptimizationfollowedbyadetailedsizeandshapeoptimizationmaybeusedtoprovideefficientdesignssatisfyingperformanceandmanufacturingconstraints.

Fig.1(a)Atwin-shellall-metalrearcross-roofmemberand(b)itspolymermetalhybridcounterpartconsistingasinglemetal-shellstampingandinjection-moldedplasticribbing.

Theorganizationofthepaperisasfollows:

Anoverviewofthebasicsoftopology,

sizeandshapeoptimizationmethodsispresentedandabriefdescriptionofthemaincomputationaltoolsusedinthepresentworkisgiveninSectionII.TheresultsobtainedinthepresentworkarepresentedanddiscussedinSectionIII.ThemainconclusionsresultingfromthepresentworkaresummarizedinSectionIV.

 

2.ComputationProcedure

2.1TheBasicsofStructuralTopology,SizeandShapeOptimization

Structuraloptimizationisaclassofengineeringoptimizationproblemsinwhichthe

evaluationofanobjectivefunction(s)orconstraintsrequirestheuseofstructural

analyses(typicallyafiniteelementanalysis,FEA).Incompactform,theoptimization

problemcanbesymbolicallydefinedas:

Minimizetheobjectivefunctionf(x)

Subjecttothenon-equalityconstraintsg(x)<0andtotheequalityconstraints

h(x)=0

WherethedesignvariablesxbelongtothedomainD

where,ingeneral,g(x)andh(x)arevectorfunctions.Thedesignvariablesxformavectorofparametersdescribingthegeometryofaproduct.Forexample,x,f(x)

g(x)andh(x)canbeproductdimensions,productweight,astressconditiondefiningtheonsetofplasticyielding,andconstraintsonproductdimensions,respectively.

TopologyOptimization

Topologyoptimizationmethodsallowthechangesinthewaysubstructuresareconnectedwithinafixeddesigndomainandcanbeclassifiedas(a)discreteelement

(alsoknownasthegroundstructure)approach;and(b)continuumapproaches.Inthe

discreteelementapproach,thedesigndomainisrepresentedasafinitesetofpossible

locationsofdiscretestructuralmemberssuchastruss,frame,andpanels.Byvaryingthewidth/thicknessofeachmemberinthedesigndomainbetweenzero(inthiscasetheelementbecomesnonexistent)andacertainmaximumvalue,structureswithdifferentsizesandtopologiescanberepresented.Inthecontinuumapproach,thedesigndomainisrepresentedasthecontinuummixtureofamaterialand“void”andtheoptimaldesignisdefinedwithrespecttothedistributionsofthematerialdensitywithinthedesignspace.Sincethediscreteelementapproachutilizesacollectionofprimitivestructuralmembers,itallowseasyinterpretationoftheconceptualdesign.However,potentiallyoptimaltopologiesmaynotbeattainablebythenumberandtypesofpossiblememberlocationsdefinedinthedesigndomain.Thecontinuumapproach,ontheotherhand,doesnothavethislimitation,whileitmaybecomputationallymoreexpensive.Overthelastdecades,majoradvanceshavebeenreportedintheareaofthediscreteelementstructuraloptimization[6-10].

SizeOptimization

Withinsizeoptimizationapproach,thedimensionsthatdescribeproductgeometryare

usedasdesignvariables,x.Theapplicationofsizeoptimizationis,consequently,mostlyusedatthedetaileddesignstagewhereonlythefinetuningofproductgeometryisnecessary.Sizeoptimizationistypicallydoneinconjunctionwithfeature-basedvariationgeometry[11]whichisavailableinmanymodernCADprograms.Withpresent-dayavailabilityoffastpersonalcomputers,sizeoptimizationisrelativelyastraightforwardtaskandittypicallyrequiresnore-meshingofthefiniteelementmodelsduringoptimizationiterations.Adifficultymayarise,however,whenextremelylargefiniteelementmodelsorhighlynonlinearphenomenaneedtobeanalyzed,inwhichcasesurrogate(simplified)modelsaretypicallyemployed.

ShapeOptimization

Shapeoptimizationallowsthecha

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1