水电站实习报告.docx

上传人:b****8 文档编号:10870448 上传时间:2023-02-23 格式:DOCX 页数:16 大小:30.88KB
下载 相关 举报
水电站实习报告.docx_第1页
第1页 / 共16页
水电站实习报告.docx_第2页
第2页 / 共16页
水电站实习报告.docx_第3页
第3页 / 共16页
水电站实习报告.docx_第4页
第4页 / 共16页
水电站实习报告.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

水电站实习报告.docx

《水电站实习报告.docx》由会员分享,可在线阅读,更多相关《水电站实习报告.docx(16页珍藏版)》请在冰豆网上搜索。

水电站实习报告.docx

水电站实习报告

实习目的:

1.了解我国目前形势下水利水电工程建设的方针、政策、现状和发展趋势。

2.通过对溪落渡水利工程的现场生产实习活动,以及参观相关水利枢纽工程,进一步加深对水利枢纽工程的理解,将理论知识和工程实践相结合,提高分析问题和解决问题的能力。

3.通过现场教学和参观,进一步加强对工程施工组织与施工管理知识的理解。

4.过学习大型水利工程的规划、设计及施工方面的技术经验,为毕业设计打下扎实基础。

实习要求:

通过实习,要求大家着重对溪落渡水利枢纽做如下几方面了解,

1.枢纽工程规划和综合利用情况;

2.枢纽总体布置和方案选择的特点;

3.枢纽组成建筑物的作用、选型和设计原则;

4.主副厂房的布置及厂区布置的特点;

5.施工组织设计与主体工程的施工方法;

6.工程建设监理实务。

一.管理与安全

溪洛渡项目建设部安全部的杨总监给我们做了安全方面的讲座:

 溪洛渡水电站规模宏大,建设周期长,施工极其复杂,安全风险高,在水电站建设初期,就提出了“创建西部水电开发典范工程”的目标。

溪洛渡水电站安全管理工作在参建各方的共同努力下,传承三峡安全管理经验,坚持“双零”管理目标不动摇,积极探讨溪洛渡水电站安全生产管理的长效机制,逐步实现“三个转变”:

即从事后查处向事前防范转变,从集中整治向规范化、制度化、日常化管理转变,从人治向法治转变。

  由溪洛渡的特殊性导致工程事前控制难度大,过程控制难度大,社会化用工形式的巨大改变导致流动性强,民技工安全教育培训难度大,从而加剧了安全管理的难度。

为了确保安全溪洛渡推行“一岗双责”制建设。

在“合同项目管理”基础上,实施“项目工点管理”。

将水电站各合同项目分部位划分为若干个工点管理单元,明确了工点安全管理内容、管理措施、安全实施责任人及检查责任人,安全实施责任人负责安全管理和隐患整改等工作的组织实施,安全检查责任人负责对施工现场的安全监督检查。

进一步细化水电站建设管理目标,落实各方管理职责,工点管理是安全生产的第一责任区,开展安全管理体系检查。

为了督促水电站参建各单位加强安全管理体系建设,建设部每年组织成立安全管理体系检查组对各单位的安全管理体系建设及运行情况进行专项检查,重点对各单位机构设置、人员及资源配置、职责权限划分、工作流程、制度建设、安全教育培训、安全技术交底、安全生产隐患排查治理、安全许可证制度执行、“一岗双责”制执行、协作队伍管理等方面进行检查,对于存在的不足提出整改要求,并督促落实整改。

组织制定安全管理办法,并监督实施,组织参建各方安全教育培训,定期召开安全生产例会,定期开展安全考核工作,危险源辨识、评价与监督管理,开展安全监督检查工作。

七年来溪洛渡水电站安全管理经历了从主体水电站施工准备期的粗放式管理逐步上升到主体水电站施工期向制度化、程序化、标准化管理发展的过程。

已形成了业主、监理和施工单位三位一体的有效安全管理体系;全体建设者对双零管理目标有了进一步的正确认识和深刻理解,全员安全意识、素质和职业技能不断提高;安全管理程序化、规范化、标准化基本形成。

二.大坝与施工篇

第一天给我们做报告的是溪洛渡工程建设部的王伟处长,他对溪洛渡的总体情况作了介绍主要分工程流域介绍,施工总布置,工程建设情况和工程亮点四个部分:

金沙江是长江的上游河段,流经青、藏、川、滇四省区,流域面积47.32万Km2,约占长江全流域面积的26%,从河源至宜宾干流河长3479Km,落差5100m,分别占长江干流全长和总落差的55%和95%。

金沙江径流丰沛,河流落差大,多年平均年径流量1550亿立方米,水能资源蕴藏量达1.1亿千瓦,位于全国12个水电基地之首。

金沙江下游河段分四级开发,从上至下依次为乌东德、白鹤滩、溪洛渡和向家坝四座梯级水电站。

规划总装机容量3930万Kw,总年发电量1833亿Kw.h。

四座电站可获得总库容447亿m3,调节库容180亿m3。

溪洛渡水电站位于四川省雷波县和云南省永善县境内金沙江干流上的峡谷地段,距离下游宜宾市河道里程184公里,距离三峡、武汉、上海的直线距离分别是770公里、1065公里、1780公里,是一座以发电为主,兼有拦沙、防洪和改善下游航运条件等巨大综合效益的巨型水电站工程。

溪洛渡水电站枢纽由拦河坝、泄洪、引水、发电等建筑物组成。

拦河坝为混凝土双曲拱坝,坝顶高程610米,最大坝高285.5米,坝顶弧长698.07米,左右岸布置地下厂房,各安装9台单机容量为70万千瓦的水轮发电机组,总装机容量1260万千瓦,年发电量571.2—640亿千瓦时,位居世界第三。

溪洛渡水库正常蓄水位600米,死水位540米,水库总库容126.7亿立方米,调节库容64.6亿立方米,是长江防洪体系的重要组成部分,是解决川江防洪问题的主要工程措施之一;通过水库合理调度,可使三峡库区入库含沙量比天然状态减少34%以上;由于水库对径流的调节作用,将直接改善下游航运条件,水库区亦可实现部分通航。

该工程2003年开始筹建,2005年底主体工程开工,2015年竣工投产,总工期约13年,按2005年一季度价格指数计算,整个工程静态总投资503.4亿元。

溪落渡水电站的建设条件好、综合效益显著、经济指标优越,是西电动送骨干电源点。

溪洛渡电站以发电为主,兼有防洪、拦沙、改善下游航运条件、环境和社会经济等方面的巨大的综合效益。

兴建溪洛渡水电站,实施“西电东送”,对实现我国能源合理配置,改善电源结构,改善生态环境,促进西部地区特别是川、滇金沙江两岸少数民族地区的经济发展,促进长江流域经济可持续发展具有深远的历史意义和作用。

这也就是溪洛渡水电站建设的必要性了。

溪洛渡的综合效益巨大:

装机1386万kW,多年平均发电量571.2亿Kw·h,枯水期电量145.1亿Kw·h,相当于每年减少燃煤2200万t,减少CO2排放量约4000万t,SO2约40万t。

溪洛渡电站现为不完全年调节,通过水库的调节作用,可增加下游三峡、葛洲坝电站的保证出力37.92万千瓦,增加枯水期电量18.8亿千瓦时,大量的优质电能送到华东、华中地区,对于改善能源结构,环节我国东部电力供需矛盾意义重大,系"西电东送"的启动工程。

溪洛渡坝址年输沙量2.47亿t,占三峡水库入库泥沙的47%,多年平均含沙量1.7kg/m3,利用巨大的死库容拦蓄悬移质泥沙,减少三峡水库的入库泥沙。

溪洛渡水电站单独运用30年,共可减少向下游输沙58.84亿t,占同期来沙量的80%;运用60年共减少向下游输沙108.3亿t,占同期来沙量的73.6%,有效的减小了三峡水库库尾段及重庆港的泥沙淤积,有利于重庆港的繁荣以及三峡水库的长期使用和综合效益的发挥。

溪洛渡水库控制金沙江流域面积的96%,水库总库容126.7亿m3,其中防洪库容46.5亿m3,配合其他措施,可使川江下游沿岸的宜宾、泸州、重庆等城市的防洪标准由5~20年一遇提高到50~100年一遇。

水库汛期拦蓄金沙江洪水,直接减少了进入三峡水库的洪量,配合三峡水库运用可使长江中下游防洪标准进一步提高。

电站枢纽位于不通航河段,距下游通航河段约76.5Km,溪洛渡水库形成后,由于水库的水量调节,将增加枯水期下泄流量,改善下游航道枯水期的通航条件。

经计算,可使新市镇至宜宾河段枯水期流量较天然情况增加约500立方米/秒,改善下游枯水期通航条件。

溪落渡水库淹没区是云南、四川两省的少数民族居住的贫困地区,经济以传统农业为主,工业所占比例很小,丰富的水能资源、矿产资源、生物资源和旅游资源均未得到充分的开发利用。

随着溪洛渡水电站的建设,库区对外、对内水陆交通条件的改善,移民及工程开发建设资金的投入,对库区各县的基础设施建设、资源开发利用、优化产业结构、发展经济必将起到积极的推动作用,为库区各县的脱贫致富制造一个难得的机遇。

溪洛渡工程主要有以下工程特点

1、工程规模巨大2、综合效益显著3、环境影响小4、工程技术难度高5、工程建设条件好6、水库淹没影响小7、电力有市场、电价有竞争力

溪洛渡水电站枢纽:

由拦河坝、泄洪、引水、发电等建筑物组成。

拦河坝为混凝土双曲拱坝,坝顶高程610米,最大坝高285.5米,坝顶弧长698.07米,拱坝坝身设置7个12.5米×13.5米的表孔,8个6米×6.7米的深孔,左右两岸坡内设置4条泄洪洞,坝下游设置两到低坝,形成400米长的水垫塘,左右岸建设地下厂房,各安装9台单机容量为77万千瓦的水轮发电机组。

采用首部方式布置,引水发电建筑物由进水口、引水隧洞、主厂房、副厂房、主变室、尾水调压室、尾水隧洞、电缆竖井以及地面开、关站等组成。

鉴于工程规模大,地下洞室多,结合地形地质条件与施工,开展了多方案的比较研究。

使推荐的枢纽布置及水工建筑物达到安全可靠并留有余地,技术可行,经济合理,运行方便。

枢纽布置遵循以下原则:

(1)坝址河谷为窄“U”型,基本对称,地质条件较好,适宜修建混凝土拱坝。

坝型比较表明,双曲拱坝较重力拱坝为优。

(2)洪水标准按1000年一遇洪水设计,10000年一遇洪水校核,相应的洪峰流量分别为43700m3/s和52300m3/s。

1)由于工程泄洪流量大、水头高,坝址区河谷狭窄,岸坡陡峻,泄洪消能设施采取“分散泄洪、分区消能”的布置原则,由坝身孔口和两岸泄洪隧洞共同担负泄洪。

2)各泄洪建筑物的泄量分配,首先研究坝身孔口合理可行的布置方式及泄量规模,然后确定泄洪隧洞的布置型式与条数。

考虑机组不参加泄洪和50%的机组参与泄洪两种工况,通过调洪演算,合理分配泄量。

4条岸边泄洪隧洞最大宣泄16700m3/s,采用有压接无压洞内“龙落尾”型。

3)适当增设表孔,增强枢纽超泄能力。

4)利用水库调蓄作用,减少枢纽下泄流量,降低消能防冲难度。

(3)因河谷狭窄,电站规模大,发电厂房采用地下式,并分左、右岸布置,各安装9台机组。

(4)施工导流建筑物

1)施工导流采用断流围堰、隧洞导流、基坑全年施工方案。

2)导流洞的布置直接影响工期和枢纽建筑物的布置,为使导流工程工期最短,在满足大坝和水垫塘施工的前提下,优先考虑围堰和导流洞的布置。

3)利用导流洞改建为永久水工建筑物,减少投资。

(5)研究工程分期蓄水提前发电的可行性与措施。

(6)结合坝址地形地质条件,合理选择进、出口建筑物位置与型式,尽可能减小高边坡。

(7)合理布置各枢纽建筑物位置,避免施工及运行期的相互干扰。

溪洛渡建设使用了5个砂石系统,5个混凝土系统,4个工程施工营地,六个渣场,供电系统是由1个110kv中心变电站和4个35kv施工变电所组成。

各砂石系统为坝的不同地区输送材料,比如后来去的唐房坪砂石料场就是专门为大坝和二道坝供应砂石料。

施工总进度计划

2003年8月筹建工程开始施工。

2005年12月26日工程正式开工。

2006年水电站~普洱渡全封闭二级专用公路建成通车。

2007年11月截流。

2008年渡口~新市镇(经沐川、乐山至成都)辅助道路通车。

2009年2月大坝工程基坑开挖完成;3月开始混凝土浇筑。

2013年8月混凝土浇筑完成。

2013年5月水库开始蓄水,6月蓄水至540m高程,第一批机组发电。

2015年10月工程竣工。

目前已经完成:

场内交通工程:

场内公路(包括支线、尾调交通)共34条,总长71公里,其中明路46公里,隧洞25公里。

对外交通专用公路全长61公里,其中隧洞8座,特大桥、大桥、中桥共29座。

2003年10月开工,2006年10月全线通车。

\辅助通道全长54.57公里,2004年10月开工,2008年9月全线通车。

缆机是承担大坝砼浇筑的垂直运输和浇筑设备及部分材料的吊运任务的主要设备,每台缆机配合一台9m3吊罐可一次吊起30t的混凝土,目前设备运行良好。

根据目前浇筑情况统计,缆机吊运混凝土平均循环时间为7~8分钟(7~8罐/h),满足仓面覆盖能力要求。

2009年6月29日水垫塘底板混凝土开始浇筑,10月29日二道坝混凝土开始浇筑,2011年4月底,二道坝浇筑到顶至高程386m。

地下电站土建金属结构安装工程2006年3月主厂房开始顶层扩挖,计划于2013年10月完工。

目前左右岸电站进水口、压力管道、主厂房、主变室、尾调室、尾水洞开挖全部完成,截止2011年3月底,土建向机电第一次交面全部完成,13台机机电向土建反交面,2台完成土建向机电第二次交面。

泄洪洞进口明挖于2006年11月开始,于2007年10月完成开挖。

泄洪洞出口和洞身开挖于2006年10月开始,2009年6月完成开挖。

泄洪洞混凝土2009年7月开始浇筑。

两岸泄洪洞目前已经进入底板和洞身混凝土浇筑阶段,龙落尾段混凝土浇筑已经开始。

工程亮点:

高边坡基本稳定,导流、截流难关顺利攻克,大坝开挖工程获专家好评,大坝坝肩槽开挖质量优良,厂房岩锚梁开挖及砼施工质量优良,环保工作突出,信息化建设上水平

溪洛渡是由成勘院设计建造的。

水电站位于四川省雷波县和云南省永善县交界的金沙江上,电站坝址距离永善县城约5公里,距离雷波县城约为20公里。

电站坝址位于溪洛渡峡谷中段,峡谷长4km,河道顺直,岸坡陡峻,山体浑厚,基岩裸露,地形完整,无沟谷切割,河谷呈对称的窄U型,临江坡高400~500m。

枯期水位370m时江面宽约70~110m,正常蓄水位600m时相应谷宽530m,河谷宽高比小于2。

两岸地形向下游微收缩,利于拱坝布置。

坝线上游长约400m的左右两岸550~650m高程之间为坡度相对较缓的坡地,利于厂房和泄洪洞进水口布置。

谷肩高程750~850m,左右岸谷肩以上均为宽缓台地。

坝基岩体为峨眉山玄武岩,共14个岩流层,总厚度490~520m,岩层致密、坚硬、完整性较好。

两岸弱卸荷水平深度20~40m,弱风化水平深度40~60m。

弱卸荷带以内岩体完整,总体成块状—整体结构,弱—微透水,属Ⅰ—Ⅱ级岩类,有较强的承载能力和抗变形能力。

岩流层以4°~5°缓倾下游微偏左岸,受构造影响较弱,无大断层分布。

主要构造形迹为一套发育于岩流层层间和层内的构造错动带和节理裂隙系统,虽分布较连续,但挤压紧密,工程性状较好。

坝址区地震基本烈度Ⅷ度。

地应力为15~20MPa,第一主应力方向与河流方向相近。

坝址具备修建高混凝土拱坝和大型地下洞室群的地形地质条件。

溪洛渡工程拦河大坝是目前国内第三高拱坝。

拱坝体型设计考虑了如下因素:

(1)由于坝址区地震烈度高,坝基岩体为多期喷溢的玄武岩,地层产状平缓,并发育有层间层内错动带,岩体变形模量呈各向异性,且坝身布置有泄洪孔口等,拱坝不宜太薄,应有足够的刚度,以维持大坝整体稳定;

(2)适当扁平化,使拱推力尽量指向山里;

(3)不设纵缝,仅设横向施工缝,拱坝倒悬度不超过0.3。

引水发电建筑物由两岸电站进水口、压力管道、主厂房、主变室、尾水建筑物、通排风系统、出线洞、地面出线场及地下厂区防渗系统等建筑物组成。

采用全地下式厂房,分左、右岸布置,主厂房位于拱端上游山体内,采用单机单管供水,设尾水调压室,尾水洞与导流洞可结合利用。

左岸电站进水口采用露天竖井式结构,右岸采用岸塔式结构,均布置在拱坝上游左、右岸550~650m高程之间的缓坡阶地,距离坝轴线250m~550m范围内,底板高程518米,呈一字形排列,进水口前缘长度为275.5m,设有一道斜坡式拦污栅,坡度为1:

0.3,栅顶操作平台高程610.0m,竖井距离进口拦污栅的水平距离为29.63m,竖井内设置有检修闸门、工作闸门以及通气孔;压力管道下平段采用钢衬;主厂房由主机间、副厂房、主安装间、副安装间四部分组成,总长384.03米,采用钻爆法施工,分九层进行开挖支护;主变室与主厂房平行布置,顶拱中心线距厂房机组中心线76米,断面尺寸为349.3米×19.8米×33.3米(长×宽×高),分五层进行开挖支护;尾水建筑物由尾水调压室、尾水洞及尾水洞出口等建筑物组成,采用“三机一室一洞”的布置格局。

 

枢纽泄洪由坝身孔口和泄洪隧洞共同承担。

在通常情况下,坝身孔口泄洪较隧洞泄洪经济安全。

泄洪建筑物按千年一遇洪水设计,万年一遇洪水校核,总泄量达到49923立方米/秒,泄洪功率近1亿千瓦,其规模为世界第一。

坝身泄洪能力取决于下游河床的承受能力和孔口对大坝结构的影响。

结合下游河床地形地质条件及拱坝坝肩抗力体的稳定,拟定水垫塘断面为复式梯形或反拱形,边坡开挖不触及420m高程以上的陡崖,并以枯水期江面宽度上限值110m作为坝身泄洪入水宽度。

由于拱坝孔口泄流具有向心作用,在水垫塘允许的入水宽度内,允许坝身孔口溢流前缘宽度可达160~180m。

拱坝坝身设置7个12.5米×13.5米的表孔,8个6米×6.7米的深孔。

根据枢纽泄量要求,扣除坝身泄量,尚需泄洪洞宣泄14000~16000m3/s。

参照国内外已有泄洪洞的泄量规模及闸门结构设计水平,结合溪洛渡泄洪水头约190m、下游河床汛期水深达60~80m的特点(约为二滩的1.5倍),拟定单洞泄量与二滩水平(Q=3860m3/s)一致。

对应坝身孔口布置,需4条泄洪洞。

左、右岸各布置2条,有利泄洪分散和出口对冲消能。

施工导流建筑物由上下游围堰及导流洞组成。

上游围堰为碎石土斜心墙土石围堰,顶高程为436.0米,最大堰高78.0米,堰顶宽度10.5米;下游围堰为土工膜心墙土石围堰,顶高程为407.00m,最大堰高52.0m,堰顶宽度12.0m;导流洞单洞长度为1259米~1938米不等,单洞过流量为5333~6400立方米/秒。

溪洛渡主体工程及导流洞开挖量约3981万立方米,其中土石方明挖2561万立方米,土石方洞挖约1420万立方米,混凝土浇筑总量1315万立方米。

工程静态投资约503亿元。

根据溪洛渡水电站坝址的地形、施工条件、截流条件及截流难度分析,与平堵截流相比较,立堵截流不需修建栈桥或浮桥,具有施工方法简单、施工准备工程量小和费用较低等优点,并且采用立堵截流难度不大,经综合分析比较,并参照国内三峡、葛州坝工程的截流实践,溪洛渡水电站截流采用单戗、立堵双向进占的截流方式。

中国三峡总公司是溪落渡水电站建设的项目法人(业主)。

2003年2月三峡总公司成立金沙江开发有限责任公司筹建处,具体负责金沙江下游水电开发征地移民、水文气象、技术支持、公共关系、综合协调、后勤保障等工作。

2004年6月三峡总公司成立溪落渡工程建设部,负责溪落渡工程建设管理工作。

溪落渡工程主设计单位是成都勘测设计研究院,对外交通专用公路设计单位是铁道部第一勘察设计研究院,长江水利委员会、西北勘测设计研究院场内生产供水、营地房建项目的设计工作。

建设监理单位主要有长江三峡技术经济发展有限公司、铁道部第二勘察设计研究院咨询监理公司、二滩国际监理公司、中南勘测设计院。

通过招标竞争选择施工队伍,主要包括:

葛洲坝集团公司、水电四局、水电六局、水电八局、水电十四局、水电武警、交通武警、解放军7321部队、中铁大桥局、中铁隧道局、中铁十一局、中铁十六局、中铁十八局等单位。

溪落渡水电站建设期间实行“业主为主、地方配合、依法管理、分区负责”的施工区封闭管理。

2003年8月4日,中国三峡总公司和云南省、四川省共同组成溪落渡工程施工区管理委员会,负责施工区重大问题的决策和协调。

 

三.地下厂房篇

成勘院的赵总工给我们做了地下厂房的设计报告。

坝址处河谷狭窄,枯期江面平均宽度约90m,岸坡陡峻,洪水泄量大,机组台数多,不具备布置岸边地面厂房和坝后式厂房的条件。

坝址区玄武岩地层平缓,两岸山体浑厚,岩体新鲜、坚硬、完整,实测地应力最大值15~20MPa,适合布置大型地下洞室群,故选定了全地下式厂房方案,分左、右两岸布置。

首部厂房方案主厂房布置在拱坝上游山体内,与电站进水口靠近,采用单机单管供水,不设上游调压井,仅设尾水调压室,引水洞最短,尾水洞与初期导流洞的结合段最长,出口下游建筑物布置紧凑,布置格局简单,各建筑物之间关系清楚,工程量最小。

水头损失最小,仅4.06m,

但主厂房布置在拱坝上游库内,防渗问题突出,主厂房上游侧须设防渗、排水帷幕,并与拱坝防渗、排水帷幕相连,首厂方案的防渗、排水帷幕达48万m。

首部厂房方案不仅避开了中、尾部厂房方案的不利因素,而且引水洞最短,尾水洞与导流洞结合最优,工程量最省,水头损失最小。

左、右岸地下厂房各安装9台机组,机组间距34.00m,两岸基本对称布置。

从山里往外依次布置主安装间、主机间、辅助安装间、副厂房及空调机房。

电站单机容量770MW,装机18台,设计水头210m,单机引用流量423.8m2/s,HD值约为1900m2。

根据水轮发电机机组运行特点并结合国内外已有设计经验,比较了垫层蜗壳、充水加压蜗壳和完全联合承载蜗壳三种型式。

经计算分析,并结合各种蜗壳结构型式的特点,借鉴国内外已建大型工程的经验,本阶段推荐采用部分垫层浇混凝土的蜗壳结构型式。

总体而言,主厂房上下游边墙岩体较完整,以块状结构为主,围岩类别以Ⅱ类为主,围岩稳定性较好,具备修建大跨度岩壁或岩台吊车梁的地质条件。

结合国内外已有设计经验,比较了岩壁式吊车梁、岩台式吊车梁和柱、梁结合式吊车梁三种型式。

考虑地下厂房规模、起吊荷载和围岩条件,推荐采用岩壁吊车梁。

坝区两岸玄武岩岩流层产状平缓,倾左岸,倾角4~6,地下水位埋深大,坡度缓,并以金沙江为区域性浸蚀基准面和排泄地。

岩体构造破坏较弱,一般构造裂隙是玄武岩含水介质的主体,层间、层内错动带是地下水流的主要通道,而由微细裂隙构成的岩块,其渗透性极差。

大坝基础帷幕与左右岸主厂房前帷幕相互联接,厂房前帷幕折向山内,形成上游库水防渗体系,将厂房与库区隔离。

在进行帷幕灌浆后,加强排水措施,通过排水孔加强裂隙间的连通,有利于地下水顺利排出,从而减少岩体渗透压力。

同时,还在厂区附近以及洞室内壁增设排水措施。

支护设计原则:

(1)广泛征求专家意见,以已建工程经验和工程类比为主,岩体力学数值分析为辅;

(2)发挥围岩本身的自承能力,以锚喷支护为主,钢筋混凝土衬砌为辅;以系统支护为主,局部加强支护为辅,并与随机支护相结合;

(3)对于有地质缺陷的局部洞段以及在结构和功能上有特殊要求的洞室,采用喷锚支护和钢筋混凝土衬砌相结合的复合式支护。

特殊部位特殊支护;

(4)围岩支护参数根据施工开挖期所揭露的实际地质条件和围岩监测及反馈分析成果进行及时调整,采用动态支护设计。

开挖的主要特点:

(1)先开挖主体洞室,适时开挖附属洞室。

三大洞室先开挖顶拱、逐层下挖、多个工作面同时施工、逐层进行围岩支护。

(2)厂房洞室纵横交错,布置集中。

在开挖施工中利用施工支洞立体作业,同高程相邻洞室尽量一起完成,各层分步骤开挖及支护。

(3)严格控制洞室交叉口处的爆破,并加强支护以及适当采取超前支护措施。

(4)各洞室在开挖过程中,围岩应力和变形在不断调整和变化。

根据开挖情况及变形监测资料,及时调整支护措施和支护参数。

通过开展地下厂房洞室群施工期快速监测与反馈分析,进行开挖过程中洞室围岩的整体与局部稳定性、支护参数的调整优化、洞室开挖完成后长期实效变形量级和收敛时间及其影响评价等,建立地下洞室群的动态仿真分析模拟系统,对洞室群的围岩稳定性进行合理评价,从而确保施工期的安全和工程的正常运行。

在监测反馈分析过程中,根据地下厂房施工分层和开挖支护的进展情况,分期提交监测反馈分析报告,依据监测反馈分析成果解释施工中的问题并提出相应建议,并对局部设计方案做出一些调整,使监测反馈起到良好的效果。

四.环境友好篇

溪洛渡建设对环境影响巨大主要表现在:

工期长:

13年

施工人数多:

最多达2万人

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1