化工热力学详细课后复习题答案陈新志.docx

上传人:b****8 文档编号:10451739 上传时间:2023-02-11 格式:DOCX 页数:140 大小:348.65KB
下载 相关 举报
化工热力学详细课后复习题答案陈新志.docx_第1页
第1页 / 共140页
化工热力学详细课后复习题答案陈新志.docx_第2页
第2页 / 共140页
化工热力学详细课后复习题答案陈新志.docx_第3页
第3页 / 共140页
化工热力学详细课后复习题答案陈新志.docx_第4页
第4页 / 共140页
化工热力学详细课后复习题答案陈新志.docx_第5页
第5页 / 共140页
点击查看更多>>
下载资源
资源描述

化工热力学详细课后复习题答案陈新志.docx

《化工热力学详细课后复习题答案陈新志.docx》由会员分享,可在线阅读,更多相关《化工热力学详细课后复习题答案陈新志.docx(140页珍藏版)》请在冰豆网上搜索。

化工热力学详细课后复习题答案陈新志.docx

化工热力学详细课后复习题答案陈新志

习题

第1章绪言

一、是否题

1.孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度的真空。

当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下

达到平衡,,,)

2.封闭体系的体积为一常数。

(错)

3.封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则

 

 

两个相都等价于均相封闭体系。

(对)

4.理想气体的焓和热容仅是温度的函数。

(对)

5.理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

6.要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V也是强度性质)

7.封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终

 

 

态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有

 

 

(对。

状态函数的变化仅决定于初、终态与途径无关。

 

8.描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

9.自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)

10.自变量与独立变量是不可能相同的。

(错。

有时可以一致)

三、填空题

1.状态函数的特点是:

状态函数的变化与途径无关,仅决定于初、终态。

2.单相区的纯物质和定组成混合物的自由度数目分别是2和2。

3.封闭体系中,温度是T的1mol理想气体从(P,V)等温可逆地膨胀到(P,V),则所做的功为

iiff

 

 

(以V表示)或(以P表示)。

 

2

4.封闭体系中的1mol理想气体(已知),按下列途径由T1、P1和V1可逆地变化至P,则

 

 

A等容过程的W=0,Q=,U=,H=。

B等温过程的W=,Q=,U=0,H=0。

C绝热过程的W=,Q=0,U=,H=

 

 

5.在常压下1000cm3液体水膨胀1cm3,所作之功为0.101325J;若使水的表面增大1cm2,我们所要作的功是J(水的表张力是72ergcm-2)。

6.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg。

7.1kJ=1000J=238.10cal=9869.2atmcm3=10000barcm3=1000Pam3。

mol

8.普适气体常数R=8.314MPacm3-1

1。

四、计算题

K-1

=83.14barcm3

-1mol

-1-1

K=8.314Jmol

K-1

=1.980calmol-1K-

,温度为

1.一个绝热刚性容器,总体积为Vt

T,被一个体积可以忽略的隔板分为A、B两室。

两室装有不同

 

 

的理想气体。

突然将隔板移走,使容器内的气体自发达到平衡。

计算该过程的Q、W、和最终的T

和P。

设初压力是(a)两室均为P0;(b)左室为P0,右室是真空。

解:

(a)

(b)

2.常压下非常纯的水可以过冷至0℃以下。

一些-5℃的水由于受到干扰而开始结晶,由于结晶过程进行得

和水

很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。

已知冰的熔化热为333.4Jg-1在0

~-5℃之间的热容为4.22Jg-1K-1

解:

以1克水为基准,即

 

 

由于是等压条件下的绝热过程,即,或

3.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?

解:

 

4.对于为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程,其中

 

 

,试问,对于的理想气体,上述关系式又是如何?

以上a、b、c为常数。

解:

理想气体的绝热可逆过程,

 

5.一个0.057m3气瓶中贮有的1MPa和294K的高压气体通过一半开的阀门放入一个压力恒定为0.115MPa的气柜中,当气瓶中的压力降至0.5MPa时,计算下列两种条件下从气瓶中流入气柜中的气体量。

(假设气

体为理想气体)

(a)气体流得足够慢以至于可视为恒温过程;

(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数)。

解:

(a)等温过程

 

 

(b)绝热可逆过程,终态的温度要发生变化

 

 

K

mol

 

mol

五、图示题

1.下图的曲线Ta和Tb是表示封闭体系的1mol理想气体的两条等温线,56和23是两等压线,而64和31是两等容线,证明对于两个循环1231和4564中的W是相同的,而且Q也是相同的。

解:

1-2-3-1循环,

 

4-5-6-4循环,

所以

 

 

第2章P-V-T关系和状态方程

一、是否题

1.纯物质由蒸汽变成固体,必须经过液相。

(错。

如可以直接变成固体。

2.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

3.当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

4.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

(错。

如温度大于Boyle温度时,Z>1。

5.理想气体的虽然与P无关,但与V有关。

(对。

 

 

6.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。

(对。

则纯物质的P-V相图上的饱和汽体系和饱和液体系曲线可知。

7.纯物质的三相点随着所处的压力或温度的不同而改变。

(错。

纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。

8.在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。

(错。

它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)

9.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。

(对。

这是纯物质的汽液平衡准则。

10.若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。

(错。

11.纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。

(错。

只有吉氏函数的变化是零。

12.气体混合物的virial系数,如B,C…,是温度和组成的函数。

(对。

13.三参数的对应态原理较两参数优秀,因为前者适合于任何流体。

(错。

三对数对应态原理不能适用于任何流体,一般能用于正常流体normalfluid)

14.在压力趋于零的极限条件下,所有的流体将成为简单流体。

(错。

简单流体系指一类非极性的球形流,如Ar等,与所处的状态无关。

二、选择题

1.指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。

参考P-V图上的亚临界等温线。

A.饱和蒸汽B.超临界流体C.过热蒸汽

2.T温度下的过冷纯液体的压力P(A。

参考P-V图上的亚临界等温线。

A.>B.

3.T温度下的过热纯蒸汽的压力P(B。

参考P-V图上的亚临界等温线。

A.>B.

4.纯物质的第二virial系数B(A。

virial系数表示了分子间的相互作用,仅是温度的函数。

A仅是T的函数B是T和P的函数C是T和V的函数D是任何两强度性质的函数

5.能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须至少用到(A。

要表示出等温线在临界点的拐点特征,要求关于V的立方型方程)

 

A.第三virial系数B.第二virial系数C.无穷项D.只需要理想气体方程

6.当时,纯气体的的值为(D。

 

A.0B.很高的T时为0C.与第三virial系数有关D.在Boyle温度时为零

三、填空题

 

1.纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为和

 

 

 

2.表达纯物质的汽平衡的准则有(吉氏函数)、

(Claperyon方程)、(Maxwell等面积规则)。

它们能(能/不能)推广到其它类型的相平衡。

 

3.Lydersen、Pitzer、Lee-Kesler和Teja的三参数对应态原理的三个参数分别为、、和。

4.对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,在P-T图上是重叠的(重叠/分开),而在P-V图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。

纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点。

5.对三元混合物,展开第二virial系数

,其中,涉及了下标相同的virial系数有,它们表示两个相同分子间的相互作用;下标不同的virial系数有,它们表示两

个不同分子间的相互作用。

6.对于三混合物,展开PR方程常数a的表达式,=

,其中,下标相同的相互作用参数有,其值应为1;下标不同的相互作用参数有

 

到,在没有实验数据时,近似作零处理。

,通常它们值是如何得到?

从实验数据拟合得

 

7.简述对应态原理在对比状态下,物质的对比性质表现出较简单的关系。

8.偏心因子的定义是,其含义是。

9.正丁烷的偏心因子=0.193,临界压力P=3.797MPa则在T=0.7时的蒸汽压为

cr

 

 

MPa。

10.纯物质的第二virial系数B与vdW方程常数a,b之间的关系为

 

四、计算题

1.根据式2-26和式2-27计算氧气的Boyle温度(实验值是150°C)。

解:

由2-26和式2-27得

查附录A-1得氧气的Tc=154.58K和=0.019,并化简得

并得到导数

 

 

迭代式,采用为初值,

,且

2.在常压和0℃下,冰的熔化热是334.4Jg-1,水和冰的质量体积分别是1.000和1.091cm3g-1

 

0℃时水

的饱和蒸汽压和汽化潜热分别为610.62Pa和2508Jg-1,请由此估计水的三相点数据。

解:

在温度范围不大的区域内,汽化曲线和熔化曲线均可以作为直线处理。

对于熔化曲线,已知曲线上的一点是273.15K,101325Pa;并能计算其斜率是

 

 

PaK-1

熔化曲线方程是对于汽化曲线,也已知曲线上的一点是273.15K,610.62Pa;也能计算其斜率是

PaK-1

汽化曲线方程是

 

 

解两直线的交点,得三相点的数据是:

Pa,K

,估计

3.当外压由0.1MPa增至10MPa时,苯的熔点由5.50℃增加至5.78℃。

已知苯的熔化潜热是127.41Jg-1

苯在熔化过程中的体积变化?

解:

K

 

 

cm

m3g-1=1.00863

mol-1

4.试由饱和蒸汽压方程(见附录A-2),在合适的假设下估算水在25℃时的汽化焓。

解:

由Antoine方程查附录C-2得水和Antoine常数是

 

Jmol-1

5.一个0.5m3的压力容器,其极限压力为2.75MPa,出于安全的考虑,要求操作压力不得超过极限压力的一半。

试问容器在130℃条件下最多能装入多少丙烷?

(答案:

约10kg)

解:

查出Tc=369.85K,Pc=4.249MPa,ω=0.152

P=2.75/2=1.375MPa,T=130℃

由《化工热力学多媒体教学》软件,选择“计算模块”→“均相性质”→“PR状态方程”,计算出给定状态下的摩尔体积,

V

v

=2198.15cm

3mol-1

m=500000/2198.15*44=10008.4(g)

6.用virial方程估算0.5MPa,373.15K时的等摩尔甲烷

(1)-乙烷

(2)-戊烷(3)混合物的摩尔体积(实验

值5975cm3mol-1。

已知373.15K时的virial系数如下(单位:

cm3mol-1),

 

解:

若采用近似计算(见例题2-7),混合物的virial系数是

 

 

cm

3-1mol

7.用Antoine方程计算正丁烷在50℃时蒸汽压;用PR方计算正丁烷在50℃时饱和汽、液相摩尔体积(用软件计算);再用修正的Rackett方程计算正丁烷在50℃时饱和液相摩尔体积。

(液相摩尔体积的实验值

-1

是106.94cm3mol)。

解:

查附录得Antoine常数:

A=6.8146,B=2151.63,C=-36.24

c

临界参数T=425.4K,P=3.797MPa,ω=0.193

c

 

修正的Rackett方程常数:

α=0.2726,β=0.0003

 

 

由软件计算知,利用Rackett方程

 

8.试计算一个125cm3的刚性容器,在50℃和18.745MPa的条件下能贮存甲烷多少克(实验值是17克)?

分别比较理想气体方程、三参数对应态原理和PR方程的结果(PR方程可以用软件计算)。

解:

查出Tc=190.58K,Pc=4.604MPa,ω=0.011

 

利用理想气体状态方程

PR方程利用软件计算得

mol

9.试用PR方程计算合成气(mol)在40.5MPa和573.15K摩尔体积(实验值为135.8cm3-

1,用软件计算)。

解:

查出

 

T

c

=33.19,P=1.297MPa,ω=-0.22

c

 

Tc126.15K,Pc

.394MPa,ω=0.045

==3

 

10.欲在一7810cm3的钢瓶中装入了1000g的丙烷,且在253.2℃下工作,若钢瓶的安全工作压力10MPa,问是否有危险?

解:

查出Tc=369.85K,Pc=4.249MPa,ω=0.152

由软件可计算得

 

可以容纳的丙烷。

即所以会有危险。

五、图示题

1.将P-T上的纯物质的1-2-3-4-5-6-1循环表示在P-V图上。

 

2.试定性画出纯物质的P-V相图,并在图上指出(a)超临界流体,(b)气相,(c)蒸汽,(d)固相,(e)

汽液共存,(f)固液共存,(g)汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc

T

T=T的等温线。

c

3.试定性讨论纯液体在等压平衡汽化过程中,M(=V、S、G)随T的变化(可定性作出M-T图上的等压线来说明)。

六、证明题

1.试证明在Z-Pr图上的临界等温线在临界点时的斜率是无穷大;同样,在Z-1/Vr图上的临界等温线在临界点的斜率为一有限值。

证明:

 

 

2.由式2-29知,流体的Boyle曲线是关于的点的轨迹。

证明vdW流体的Boyle曲线是

 

证明:

由vdW方程得

 

整理得Boyle曲线

 

 

第二章例题

一、填空题

 

1.纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可以表示为和。

 

2.表达纯物质的汽平衡的准则有(吉氏函数)、

(Claperyon方程)、(Maxwell等面积规则)。

它们能(能/不能)推广到其它类型的相平衡。

 

3.Lydersen、Pitzer、Lee-Kesler和Teja的三参数对应态原理的三个参数分别为、、和。

4.对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同);一定温度下的泡点与露点,在P-T图上是重叠的(重叠/分开),而在P-V图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。

纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点。

5.对三元混合物,展开第二virial系数

,其中,涉及了下标相同的virial系数有

,它们表示两个相同分子间的相互作用;下标不同的virial系数有,它们表示两个不同分子间的相互作用。

6.对于三混合物,展开PR方程常数a的表达式,=

,其中,下标相同的相互作用参数有,其值应为1;下标不同的相互作用参数有

 

到,在没有实验数据时,近似作零处理。

,通常它们值是如何得到?

从实验数据拟合得

7.简述对应态原理在对比状态下,物质的对比性质表现出较简单的关系。

8.偏心因子的定义是,其含义是。

9.正丁烷的偏心因子=0.193,临界压力P=3.797MPa则在T=0.7时的蒸汽压为

cr

 

 

MPa。

10.纯物质的第二virial系数B与vdW方程常数a,b之间的关系为

 

二、计算题

1.根据式2-26和式2-27计算氧气的Boyle温度(实验值是150°C)。

解:

由2-26和式2-27得

查附录A-1得氧气的Tc=154.58K和=0.019,并化简得

并得到导数

 

 

迭代式,采用为初值,

,且

2.在常压和0℃下,冰的熔化热是334.4Jg-1,水和冰的质量体积分别是1.000和1.091cm3g-1

 

0℃时水

的饱和蒸汽压和汽化潜热分别为610.62Pa和2508Jg-1,请由此估计水的三相点数据。

解:

在温度范围不大的区域内,汽化曲线和熔化曲线均可以作为直线处理。

对于熔化曲线,已知曲线上的一点是273.15K,101325Pa;并能计算其斜率是

 

 

PaK-1

熔化曲线方程是对于汽化曲线,也已知曲线上的一点是273.15K,610.62Pa;也能计算其斜率是

PaK-1

汽化曲线方程是解两直线的交点,得三相点的数据是:

Pa,K

,估计

3.当外压由0.1MPa增至10MPa时,苯的熔点由5.50℃增加至5.78℃。

已知苯的熔化潜热是127.41Jg-1

苯在熔化过程中的体积变化?

 

 

解:

K

 

 

cm

m3g-1=1.00863

mol-1

4.试由饱和蒸汽压方程(见附录A-2),在合适的假设下估算水在25℃时的汽化焓。

解:

由Antoine方程查附录C-2得水和Antoine常数是

 

Jmol-1

5.一个0.5m3的压力容器,其极限压力为2.75MPa,出于安全的考虑,要求操作压力不得超过极限压力的一半。

试问容器在130℃条件下最多能装入多少丙烷?

(答案:

约10kg)

解:

查出Tc=369.85K,Pc=4.249MPa,ω=0.152

P=2.75/2=1.375MPa,T=130℃

由《化工热力学多媒体教学》软件,选择“计算模块”→“均相性质”→“PR状态方程”,计算出给定状态下的摩尔体积,

V

v

=2198.15cm

3mol-1

m=500000/2198.15*44=10008.4(g)

6.用virial方程估算0.5MPa,373.15K时的等摩尔甲烷

(1)-乙烷

(2)-戊烷(3)混合物的摩尔体积(实验

值5975cm3mol-1。

已知373.15K时的virial系数如下(单位:

cm3mol-1),

 

解:

若采用近似计算(见例题2-7),混合物的virial系数是

 

3

cm-1mol

7.用Antoine方程计算正丁烷在50℃时蒸汽压;用PR方计算正丁烷在50℃时饱和汽、液相摩尔体积(用软

 

件计算);再用修正的Rackett方程计算正丁烷在50℃时饱和液相摩尔体积。

(液相摩尔体积的实验值是

-1

106.94cm3mol)。

解:

查附录得Antoine常数:

A=6.8146,B=2151.63,C=-36.24

c

临界参数T=425.4K,P=3.797MPa,ω=0.193

c

 

修正的Rackett方程常数:

α=0.2726,β=0.0003

 

 

由软件计算知,利用Rackett方程

 

8.试计算一个125cm3的刚性容器,在50℃和18.745MPa的条件下能贮存甲烷多少克(实验值是17克)?

分别比较理想气体方程、三参数对应态原理和PR方程的结果(PR方程可以用软件计算)。

解:

查出Tc=190.58K,Pc=4.604MPa,ω=0.011

 

利用理想气体状态方程

PR方程利用软件计算得

mol

9.试用PR方程计算合成气(mol)在40.5MPa和573.15K摩尔体积(实验值为135.8cm3-

1,用软件计算)。

解:

查出

 

T

c

=33.19,P=1.297MPa,ω=-0.22

c

 

Tc126.15K,Pc

.394MPa,ω=0.045

==3

 

10.欲在一7810cm3的钢瓶中装入了1000g的丙烷,且在253.2℃下工作,若钢瓶的安全工作压力10MPa,问

是否有危险?

解:

查出Tc=369.85K,Pc=4.249MPa,ω=0.152

由软件可计算得

 

 

可以容纳的丙烷。

所以会有危险。

三、图示题

1.将P-T上的纯物质的1-2-3-4-5-6-1循环表示在P-V图上。

 

2.试定性画出纯物质的P-V相图,并在图上指出(a)超临界流体,(b)气相,(c)蒸汽,(d)固相,(e)

汽液共存,(f)固液共存,(g)汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc

T

T=T的等温线。

c

3.试定性讨论纯液体在等压平衡汽化过程中,M(=V、S、G)随T的变化(可定性作出M-T图上的等压线来说明)。

四、证明题

1.试证明在Z-Pr图上的临界等温线在临界点时的斜率是无穷大;同样,在Z-1/Vr图上的临界等温线在临界点的斜率为一有限值。

证明:

2.由式2-29知,流体的Boyle曲线是关于的点的轨迹。

证明vdW流体的Boyle曲线是

 

 

证明:

由vdW方程得

 

整理得Boyle曲线

 

 

第3章均相封闭体系热力学原理及其应用

一、是否题

 

1.体系经过一绝热可逆过程,其熵没有变化。

(对。

2.吸热过程一定使体系熵增,反之,熵增过程也是吸热的。

(错。

如一个吸热的循环,熵变为零)

3.热力学基本关系式dH=TdS+VdP只适用于可逆过程。

(错。

不需要可逆条件,适用于只有体积功存在的封闭体系)

4.象dU=TdS-PdV等热力学基本方程只能用于气体,而不能用于液体或固相。

(错。

能于任何相态)

 

5.当压力趋于零时,(是摩尔性质)。

(错。

当M=V时,不恒等于零,只有在

T=T

B

时,才等于零)

 

 

6.与参考态的压力P0无关。

(对)

 

7.纯物质逸度的完整定义是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1