最新中考数学动手操作型问题试题汇编附答案word文档.docx

上传人:b****8 文档编号:9944141 上传时间:2023-02-07 格式:DOCX 页数:14 大小:24.19KB
下载 相关 举报
最新中考数学动手操作型问题试题汇编附答案word文档.docx_第1页
第1页 / 共14页
最新中考数学动手操作型问题试题汇编附答案word文档.docx_第2页
第2页 / 共14页
最新中考数学动手操作型问题试题汇编附答案word文档.docx_第3页
第3页 / 共14页
最新中考数学动手操作型问题试题汇编附答案word文档.docx_第4页
第4页 / 共14页
最新中考数学动手操作型问题试题汇编附答案word文档.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

最新中考数学动手操作型问题试题汇编附答案word文档.docx

《最新中考数学动手操作型问题试题汇编附答案word文档.docx》由会员分享,可在线阅读,更多相关《最新中考数学动手操作型问题试题汇编附答案word文档.docx(14页珍藏版)》请在冰豆网上搜索。

最新中考数学动手操作型问题试题汇编附答案word文档.docx

最新中考数学动手操作型问题试题汇编附答案word文档

中考数学动手操作型问题试题汇编(附答案)

  以下是查字典数学网为您推荐的中考数学动手操作型问题试题汇编(附答案),希望本篇文章对您学习有所帮助。

中考数学动手操作型问题试题汇编(附答案)

10.(2019湖北荆州,10,3分)已知:

顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2019个图形中直角三角形的个数有()

A.8048个B.4024个C.2019个D.1066个

【解析】本题是规律探索题。

观察图①有4个直角三角形,图②有四个直角三角形,图③有8个直角三角形,图④有8个直角三角形,图⑤图⑥有12个直角三角形

可以发现规律图②图④图⑥图⑧

481216

直角三角形的个数,依次增加4个,并且图形中直角三角形的个数是图形序号的2倍,

所以第2019个图形中直角三角形的个数有4024个

【答案】B

【点评】对于规律探索题,关键是寻找变化图形中的不变的规律。

(2019哈尔滨,题号22分值6)22.图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.

(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个

即可);

(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个

即可);

【解析】本题考查网格中的作图能力、勾股定理以及等腰三角形性质.

(1)可以分三种情况来考虑:

以A(B)为直角顶点,过A(B)作AB垂线(点C不能落在格点上)

以C为直角顶点:

斜边AB=5,因此两直角边可以是3、4或、;

(2)也分可分三情况考虑:

以A(B)为等腰三角形顶点:

以A(B)为圆心,以5为半径画弧来确定顶点C;

以C为等腰三角形顶点:

作AB垂直平分线连确定点C(点C不能落在格点上).

【答案】

【点评】本题属于实际动手操作题,主要考查学生对格点这一新概念的理解能力、直角三角形、等腰三角形的概念及性质的掌握情况和分类讨论的数学思想,有一定的难度,容易错解和漏解.

25.(2019年四川省巴中市,25,9)①如图5,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转900,画出旋转后的△OAB

②折纸:

有一张矩形纸片如图6,要将点D沿某直线翻折1800,恰好落在BC边上的D处,请在图中作出该直线.

【解析】①如图△OAB即是旋转900后的图形,②折痕为直线DD的垂直平分线EF.

【答案】画图见解析

【点评】本题是对图形变换中的旋转及轴对称变换的考查.

24.(2019广安中考试题第24题,8分)(8分)现有一块等腰三角形纸板,量得周长为32cm,底比一腰多2cm。

若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图,并计算拼成的各个四边形的两条对角线长的和。

思路导引:

动手操作,注意分类讨论,进行长度计算问题,联系平行四边形的性质:

对角线互相平分,以及直角三角形中的勾股定理分别对每一种情况进行解答

解析:

设AB=AC=xcm,则BC=(x+2)cm,根据题意得出x+2+2x=32,解得x=10。

因此AB=AC=10cm,BC=12cm,过点A做ADBC于点D,

∵AB=AC,ADBC,BD=CD=6cm,AD==8cm,

可以拼成4种四边形,如图所示:

(1)中两条对角线之和是10+10=20(cm),

(2)中两条对角线之和是()(cm),

图(3)中,BO===

两条对角线之和是()(cm),

图(4)中,S△ABC=ACBC=ABOC,所以OC==,

专项四动手操作型问题(38)

22.(2019北京,22,5)操作与探究:

(1)对数轴上的点进行如下操作:

先把点表示的数乘以,再把所得数对应的点向右平移1个单位,得到点的对应点.

点在数轴上,对线段上的每个点进行上述操作后得到线段,其中点的对应点分别为.如图1,若点表示的数是,则点表示的数是;若点表示的数是2,则点表示的数是;已知线段上的点经过上述操作后得到的对应点与点重合,则点表示的数是;

(2)如图2,在平面直角坐标系中,对正方形及其内部的每个点进行如下操作:

把每个点的横、纵坐标都乘以同一种实数,将得到的点先向右平移个单位,再向上平移个单位(),得到正方形及其内部的点,其中点的对应点分别为。

已知正方形内部的一个点经过上述操作后得到的对应点与点重合,求点的坐标。

【解析】

(1)3+1=0;设B点表示的数为a,a+1=2,a=3;设点E表示的数为a,a+1=a,解得a=

(2)由点A到A,可得方程组;由B到B,可得方程组,解得

设F点的坐标为(x,y),点F与点F重合得到方程组,解得,即F(1,4)

【答案】

(1)0,3,

(2)F(1,4)

【点评】本题考查了根据给出的条件列出方程或方程组,并解方程组的知识。

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

23.(2019北京,23,7)已知二次函数

在和时的函数值相等。

(1)求二次函数的解析式;

(2)若一次函数的图象与二次函数的图象都经过点,求和的值;

(3)设二次函数的图象与轴交于点(点在点的左侧),将二次函数的图象在点间的部分(含点和点)向左平移个单位后得到的图象记为,同时将

(2)中得到的直线向上平移个单位。

请结合图象回答:

当平移后的直线与图象有公共点时,的取值范围。

【解析】利用已知条件求二次函数及一次函数解析式。

平移后的临界点讨论。

【答案】解:

(1)由题意和时的函数值相等可知,

解得,二次函数的解析式为

(2)∵二次函数图象必经过点A

∵一次函数y=kx+6的图象经过点A

3k+6=6,k=4

(3)由题意可知,点间的部分图象的解析式为,

则向左平移后得到的图象的解析式为

此时平移后的解析式为

由图象可知,平移后的直线与图象有公共点,

则两个临界的交点为与

【点评】前两问都比较简单,第三问有一定难度,考察学生对于函数图象平移的理解,以及对于直线与抛物线位置关系的运用。

此题的关键在于临界点讨论需要同学们能够表示出临界点的坐标,带入直线解析式即可得到n的取值范围。

24.(2019北京,24,7)在中,,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段。

(1)若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数;

(2)在图2中,点不与点重合,线段的延长线与射线交于点,猜想的大小(用含的代数式表示),并加以证明;

(3)对于适当大小的,当点在线段上运动到某一位置(不与点,重合)时,能使得线段的延长线与射线交于点,且,请直接写出的范围。

【解析】动点问题和几何变换结合

【答案】⑴

⑵连接,易证

又∵

⑶∵且

∵点不与点重合

【点评】此题并没有考察常见的动点问题,而是将动点问题和几何变换结合在一起,应用一个点构造2倍角。

需要同学们注意图形运动过程中的不变量,此题可以用倒角(上述答案的方法)或是构造辅助圆的方法解决。

25.(2019北京,25,8)在平面直角坐标系中,对于任意两点与的非常距离,给出如下定义:

若,则点与点的非常距离

若,则点与点的非常距离为.

例如:

点,点,因为,所以点与点的非常距离为,也就是图1中线段与线段长度的较大值(点为垂直于轴的直线与垂直于轴的直线的交点)。

(1)已知点,为轴上的一个动点,

①若点与点的非常距离为2,写出一个满足条件的点的坐标;

②直接写出点与点的非常距离的最小值;

(2)已知是直线上的一个动点,

①如图2,点的坐标是(0,1),求点与点的非常距离的最小值及相应的点的坐标;

②如图3,是以原点为圆心,1为半径的圆上的一个动点,求点与点的非常距离

的最小值及相应的点和点的坐标。

【解析】几何图形最值问题

【答案】⑴①或

⑵①设坐标

此时

距离为

此时.

②从第二题第一问的作图中可以发现,过C点向x、y轴作垂线,当CP和CQ长度相等的时候非常距离最短,理由是,如果向下(如左图)或向上(如右图)移动C点到达C点,其与点D的非常距离都会增大。

故而C、D为正方形相对的两个顶点时有最小的非常距离。

过O作直线的垂线,交⊙O于点E,此时点E离直线最近,易得

设D(x0,x0+3)

根据分析得知EF=EF

最小值1。

【点评】此题是第一次在代数题目中用到了定义新运算,题目很新颖。

知识点融合度较高。

需要同学们有较强的阅读理解题目的能力和数形结合能力。

计算并不复杂,关键在于对于几何图形最值问题的探讨。

18.(2019浙江省温州市,18,8分)如图,在方格纸中,的三个顶点及A、B、C、D、E五个点都在小方格的顶点上。

现以A、B、C、D、E中的三个点为顶点画三角形。

(1)在图甲中画出一个三角形与△PQR全等;

(2)在图乙中画出一个三角形与△PQR面△PQR积相等但不全等

【解析】一定要牢牢把握全等三角形的判定条件。

全等三角形的条件必须有一个边作为条件,然后通过观察,找到其他合适的边和角.面积相等的条件一般是等底,等高。

【答案】

【点评】本题是一道方案设计题,考察了学生的应用知识的能力,考查的方式比较灵活.

23.(2019浙江省衢州,23,10分)课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:

(1)将一张标准纸ABCD(AB

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB

第一步:

沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);

第二步:

沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙).此时E点恰好落在AE边上的点M处;

第三步:

沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你研究,矩形纸片ABCD是否是一张标准纸?

请说明理由.

(3)不难发现,将一张标准纸如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?

探索并直接写出第2019次对开后所得标准纸的周长.

【解析】

(1)证明矩形ABEF长与宽之比为;

(2)利用△ABE≌△AFE和勾股定理证明矩形ABCD长与宽之比为;

(3)利用第

(1)的结论进行规律探索.

【答案】解:

(1)是标准纸.理由如下:

∵矩形ABCD是标准纸,

由对开的含义知:

AF=1分

矩形纸片ABEF也是标准纸.2分

(2)是标准纸.理由如下:

设AB=CD=a

由图形折叠可知:

DN=CD=DG=a3分

DGEM

∵由图形折叠可知:

△ABE≌△AFE

DAE=BAD=45

△ADG是等腰直角三角形4分

在Rt△ADG中,AD=5分

矩形纸片ABCD是一张标准纸6分

(3)

对开次数第一次第二次第三次第四次第五次第六次

周长2(1+)2(+)2(+)2(+)2(+)2(+)

第5次对开后所得的标准纸的周长为:

8分

第2019次对开后所得的标准纸的周长为:

10分

【点评】本题着重考查了线段的比,图形的折叠,三角形全等的判定和勾股定理以及规律探索问题,主要培养学生的阅读能力、观察能力和归纳总结能力.找规律的题目,应以第一个图形为基准,细心观察,得到第n个图形与第一个图形之间的关系.解题的关键是认真阅读题目,从中找出相关的知识点运用定义和定理进行解答.

专项四动手操作型问题(38)

10.(2019四川内江,10,3分)如图3,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为

A.15B.20C.25D.30

【解析】由折叠,知阴影部分图形的周长=EA1+A1D1+BC+FC+EB+D1F=EA+AD+BC+FC+EB+DF=(EA+EB)+AD+BC+(FC+DF)=AB+AD+BC+CD=2(AB+BC)=2(10+5)=30.

【答案】D

【点评】折叠问题中蕴涵轴对称的数学道理,解决时往往需要从线,角,形三方面考虑.此题是单从线的方面发现折叠前后的相等线段,结合矩形的性质考查学生做数学,学数学的能力,并从中渗透整体思想.

16.(2019江苏盐城,16,3分)如图,在△ABC中,D、E分别是边AB、AC的中点,B=500,现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则BDA1的度数为.

【解析】本题考查了角的计算.掌握折叠的性质是关键.先由中位线定理证明DE∥BC,得到ADE=B=500,再由折叠可知:

ADE=EDA1,再利用邻补角就可以计算出BDA1的度数.

【答案】因为D、E分别是边AB、AC的中点,所以DE∥BC,所以ADE=B=500,再由折叠可知:

ADE=EDA1,所以BDA1=1800-500-500=800.

【点评】本题以折纸为背景,考查了邻补角的性质,平行线的性质、三角形中位线定理以及折叠后角重合等问题,考查了同学们的分析问题、解决问题的综合能力.

(2019四川成都,25,4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

第一步:

如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);

第二步:

如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;

第三步:

如图③,将MN左侧纸片绕G点按顺时针方向旋转180,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.

(注:

裁剪和拼图过程均无缝且不重叠)

则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.

解析:

通过操作,我们可以看到最后所得的四边形纸片是一个平行四边形,其上下两条边的长度等于原来矩形的边AD=6,左右两边的长等于线段MN的长,当MN垂直于BC时,其长度最短,等于原来矩形的边AB的一半,等于4,于是这个平行四边形的周长的最小值为2(6+4)=20;当点E与点A重合,点M与点G重合,点N与点C重合时,线段MN最长,等于,此时,这个四边形的周长最大,其值为2(6+)=12+。

23.(2019浙江省衢州,23,10分)课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:

(1)将一张标准纸ABCD(AB

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB

第一步:

沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);

第二步:

沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙).此时E点恰好落在AE边上的点M处;

第三步:

沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你研究,矩形纸片ABCD是否是一张标准纸?

请说明理由.

(3)不难发现,将一张标准纸如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?

探索并直接写出第2019次对开后所得标准纸的周长.

【解析】

(1)证明矩形ABEF长与宽之比为;

(2)利用△ABE≌△AFE和勾股定理证明矩形ABCD长与宽之比为;

(3)利用第

(1)的结论进行规律探索.

【答案】解:

(1)是标准纸.理由如下:

∵矩形ABCD是标准纸,

由对开的含义知:

AF=1分

矩形纸片ABEF也是标准纸.2分

(2)是标准纸.理由如下:

设AB=CD=a

由图形折叠可知:

DN=CD=DG=a3分

DGEM

∵由图形折叠可知:

△ABE≌△AFE

DAE=BAD=45

△ADG是等腰直角三角形4分

在Rt△ADG中,AD=5分

矩形纸片ABCD是一张标准纸6分

(3)

对开次数第一次第二次第三次第四次第五次第六次

周长2(1+)2(+)2(+)2(+)2(+)2(+)

第5次对开后所得的标准纸的周长为:

8分

第2019次对开后所得的标准纸的周长为:

10分

【点评】本题着重考查了线段的比,图形的折叠,三角形全等的判定和勾股定理以及规律探索问题,主要培养学生的阅读能力、观察能力和归纳总结能力.找规律的题目,应以第一个图形为基准,细心观察,得到第n个图形与第一个图形之间的关系.解题的关键是认真阅读题目,从中找出相关的知识点运用定义和定理进行解答.

25.(2019年浙江省宁波市,25,10)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,依次类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,□ABCD中,若AB=1,BC=2,则□ABCD为1阶准菱形.

(1)判断现推理:

①邻边长分别为2和3的平行四边形是____阶准菱形;

②小明为了得剪去一个菱形,进行如下操作:

如图2,把□ABCD沿BE折叠(点E在AD上),使点落在边上的点F,,得到四边形,请证明四边形是菱形.

(2)操作、探究、计算:

①已知的边长分别为1,a(a﹥1)且是3阶准菱形,请画出□ABCD及裁剪线的示意图,并在下方写出的a值

②已知□ABCD的邻边长分别为a,b(a﹥b),满足a=6b+r,b=5r,请写出□ABCD是几阶准菱形

【解析】

(1)①根据邻边长分别为2和3的平行四边形进过两次操作即可得出所剩四边形是菱形,即可得出答案;②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案;

(2)①如图所示:

②∵a=6b+r,b=5r,a=65r+r=31r;

如图所示:

故□ABCD是10阶准菱形.

(2)①利用3阶准菱形的定义,即可得出答案;②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出□ABCD是几阶准菱形.

【答案】

(1)①2,②由折叠知:

ABE=FBE,AB=BF

∵四边形ABCD是平行四边形AE∥BF

AEB=FBE,AEB=ABE,

四边形ABFE是平行四边形,

四边形ABFE是菱形,

(2)a=4,a=52,a=43,a=53.(图同解析)

一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:

“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:

“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

要练说,得练听。

听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。

当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。

平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

【点评】此题主要考查了图形的剪拼以及菱形的判定,根据已知n阶准菱形定义正确将平行四边形分割是解题关键.

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?

”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?

”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?

曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

查字典数学网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 专升本

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1