参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
C
C
D
C
B
C
A
B
D
B
题号
11
12
13
14
15
16
答案
B
B
C
A
C
B
二、问答题
1.在测量了变量的分布特征之后,测度变量之间的相关程度有何意义?
测量指标有哪些?
答:
〔P36〕有时候掌握了变量的分布特征之后还不够,还需要了解变量之间相互影响的变动规律,以便对变量之间的相对关系进展深入研究。
测度指标有协方差和相关系数。
2.简述数学期望和方差各描述的是随机变量的什么特征。
答:
〔P62、64)随机变量的期望值也称为平均值,它是随机变量取值的一种加权平均数,是随机变量分布的中心,它描述了随机变量取值的平均水平,而方差是各个数据与平均值之差的平方的平均数,方差用来衡量随机变量对其数学期望的偏离程度。
3.在数据分布中离散程度测度的引入有何意义?
答:
〔P25〕研究变量的次数分布特征出来考察其取值的一般水平的上下外,还需要进一步考察其各个取值的离散程度。
它是变量次数分布的另外一个重要特征。
对其进展测定在实际研究中十分重要的意义:
首先通过对变量取值之间离散程度的测定可以反映各个变量值之间的差异大小,从而也就可以反映分布中心指标对各个变量值代表性的上下。
其次,通过对变量取值之间离散程度的测定,可以大致反映变量次数分布密度曲线的形状。
4.在变量数列中引入偏度与峰度的概念有何意义?
答:
〔P33〕对变量次数分布的偏斜程度和峰尖程度进展测度,一方面可以加深人们对变量取值的分布情况的认识;另一方面人们可以将所关心的变量的偏度标值和峰度指标值与某种理论分布的偏度标值和峰度指标值进展比拟,以判断所关心的变量与某种理论分布的近似程度,为进一步的推断分析奠定根底。
5.什么是变量数列?
答:
〔P2〕在对变量取值进展分组的根底上,将各组不同变量值与其变量值出现的次数排列成的数列,就称为变量数列。
三、选答题
1.〔1〕运用算术平均数应注意什么问题?
〔2〕在实际应用中如何有效地防止〔1〕中的问题。
答:
〔P16〕〔1〕运用算术平均数应注意:
①算术平均数容易受到极端变量的影响。
这是由于算术平均数是根据一个变量的全部变量值计算的,当一个变量的取值出现极小或者极大值,都将影响其计算结果的代表性。
②权数对平均数大小起着权衡轻重的作用,但不取决于它的绝对值的大小,而是取决于它的比重。
③根据组距数列求加权算术平均数时,需用组中值作为各组变量值的代表,它是假定各组部的所有变量值是均匀分布的。
〔2〕①为了提高算术平均数的代表性,需要剔除极增值,即对变量中的极大值或极小值进展剔除。
②采用比重权数更能反映权数的实质,因为各组绝对数权数按统一比例变化,那么不会影响平均数的大小。
③注意组距数列计算的平均数在一般情况下只是一个近似值。
2.〔1〕什么是洛伦茨曲线图?
其主要用途有哪些?
〔2〕简述洛伦茨曲线图的绘制方法。
答:
〔P8-9〕〔1〕累计频数〔或频率〕分布曲线;用来研究财富、土地和工资收入的分配是否公平。
〔2〕首先,将分配的对象和承受分配者的数量均化成构造相对数并进展向上累计;其次,纵轴和横轴均为百分比尺度,纵轴自下而上,用以测定分配的对象,横轴由左向右用以测定承受分配者;最后,根据计算所得的分配对象和承受分配者的累计百分数,在图中标出相应的绘示点,连接各点并使之平滑化,所得曲线即所要求的洛伦茨曲线。
3.〔1〕简述分布中心的概念及其意义。
〔2〕分布中心的测度指标有哪些?
这些指标是否存在缺陷?
答:
〔P12-13〕〔1〕分布中心就是指距离一个变量的所有取值最近的位置,提醒变量的分布中心具有很重要的意义;首先变量的分布中心是变量取值的一个代表,可以用来反映其取值的一般水平。
其次,变量的分布中心可以提醒其取值的次数分布的直角坐标系上的集中位置,可以用来反映变量分布密度曲线的中心位置。
〔2〕分布中心常用的测度指标主要有算术平均数、中位数和众数。
算术平均数容易受到极端变量值的影响,即当一个变量的取值出现极小值或者极大值时,都将影响其计算结果的代表性;众数表示数据的普遍情况,但没有平均数准确;中位数表示数据的中等水平,但不能代表整体。
第2章概率与概率分析
本章重点难点
1.随机时间与概率;
2.随机变量及其分布;
3.随机变量的数字特征与独立性;
4.大数定律与中心极限定理。
学习目标
重点掌握:
1.随机事件概率的性质与计算;
2.随机变量及其分布的性质与测定方法;
3.随机变量数字特征及其测定方法。
能够理解:
概率与概率分析的相关概念、定义、定律和定理。
了解:
大数定律与中心极限定理的本质容。
一、选择题
1.以下现象不属于随机现象的是〔〕
A.明天的天气状况
B.投掷一颗骰子,上面的点数
C.在标准大气压下,把水加热到100℃,水会沸腾
D.下个月三星手机的销量
2.X~N〔2,1〕,那么P{X<2}=〔〕
A.0.5B.0
C.1D.0.75
3.以下关于事件的概率的说法不正确的选项是〔〕,其中A和B是对立事件。
A.0≤P(A)≤1B.P(A)+P(B)≤1
C.P(A∩B)=0D.P(AUB)=P(A)+P(B)
4.假设随机变量X在[1,5]上服从均匀分布,那么其期望E〔X〕为〔〕
A.1B.2
C.3D.4
5.假设随机变量X的分布律为P{X=k}=1/3(k=1,2,3),那么其期望为〔〕
A.1B.2
C.3D.4
6.假设事件M与事件N互不相容,那么有()
A.P(MUN)=P(M)+P(N)B.P(MUN)=P(M)-P(N)
C.P(MUN)=P(M)*P(N)D.P(M∩N)=P(M)+P(N)
7.5个球中有2红3白,求取到1个是红球,1个是白球的概率为〔〕
A.1/5B.3/5
C.1/3D.2/3
8.以下关于概率的说法,正确的选项是〔〕
A.事件M发生的概率0
C.事件M发生的概率0
9.A与B为互斥事件,那么
为()
A.ABB.B
C.AD.A+B
10.设A、B为两个事件,那么A-B表示()
A.“A发生且B不发生〞B.“A、B都不发生〞
C.“A、B都发生〞D.“A不发生或者B发生〞
11.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,那么P(AB)为()
A.0.2B.0.3
C.0.7D.0.8
12.袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全一样的概率为()
A.1/9B.1/3
C.5/9D.8/9
13.北方大学统计系06级3班共有60名同学,至少有2名同学生日一样的概率为〔一年按
365天计算〕〔〕
A.
B.
C.
D.
14.如果事件A的概率为
,事件B的概率为
,以下述中一定正确的选项是()
15.如果事件A发生的概率
,事件B发生的概率
,并且
,那么
〔〕
A.0.6 B.0.4
C. 1 D.0
16.天地公司下属3家工厂生产同一种产品,3家公司的次品率分别为0.01,0.02,0.015,而3家工厂的日产量分别为2000,1000,2000,那么天地公司该产品的总次品率是〔〕
A.0.015 B.0.014
C.0.01 D.0.02
17.离散型随机变量X的分布律为:
X
-101
概率
a
那么a等于〔〕
A.1/4B.1/3
C.1/2D.1
18.假设某学校有两个分校,一个分校的学生占该校学生总数的60%,期末考试的平均成绩为75分,另一个分校的学生占学生总数的40%,期末考试的平均成绩为77分,那么该校学生期末考试的总平均成绩为〔〕分。
A.76B.75.8
C.75.5D.76.5
19.假设随机变量Y与X的关系为Y=3X-2,并且随机变量X的方差为2,那么Y的方差D〔Y〕为〔〕
A.6 B.12
C.18 D.36
20.一个二项分布随机变量的方差与数学期望之比为1/5,那么该分布的参数p应为〔〕
A.1/5B.2/5
C.3/5D.4/5
P66
1-p=1/5
21.某保险业务员每六次访问有一次成功地获得签单〔即签单成功的概率是1/6〕,在一个正常的工作周,他分别与36个客户进展了联系,那么该周签单数的数学期望是()
A.3B.4
C.5D.6
22.数学期望和方差相等的分布是〔〕
A.二项分布 B.泊松分布
C.正态分布 D.指数分布
23.如果X服从标准正态分布,
那么()
A.
B.
C.
D.
24.假设随机变量X服从正态分布N〔0,4〕,那么随机变量Y=X-2的分布为〔〕
A.N(-2,4)B.N(2,4)
C.N(0,2)D.N(-2,2)
25.假设两个随机变量X与Y的简单相关系数r=0,那么说明这两个变量之间〔〕
A.存在非线性相关关系B.相关关系很低
C.不存在线性相关关系D.不存在任何关系
参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
B
C
C
A
B
B
C
A
题号
11
12
13
14
15
16
17
18
19
20
答案
B
A
D
B
C
B
C
B
C
D
题号
21
22
23
24
25
答案
D
B
A
A
C
二、问答题
1.常用的连续型随机变量的概率分布有哪些?
分别举一个例子说明。
答:
〔P58〕常用的连续型随机变量的概率分布有:
均匀分布,正态分布,指数分布。
例如:
某公共汽车站从上午六点起每十分钟来一辆车,那么乘客在六点以后到汽车站等车的时间是[0,10]上的均匀分布,人的身高、体重作为随机变量时都服从或近似服从正态分布,灯泡的使用寿命那么服从指数分布。
2.离散型随机变量的概率分布怎样表示?
常用的离散型随机变量的概率分布有哪些?
答:
〔P54-56〕离散型随机变量的概率分布表示为
。
常用的离散型随机变量的概率分布有两点分布、超几何分布、二项分布和泊松分布。
3.正态分布的主要特征有哪些?
答:
〔P59〕
〔1〕集中性,正态分布曲线的顶峰位于正中央,该位置也是分布的中位数和众数。
〔2〕对称性,正态分布曲线以x=μ为中心,左右对称,曲线两端永远不与横轴相交。
〔3〕均匀变动性,正态分布曲线由μ所在处开场,分别向左右两侧逐渐均匀下降。
〔4〕正态分布有两个参数,即均数μ和标准差σ,可记作N〔μ,σ〕。
均数μ决定正态分布曲线的中心位置;标准差σ决定正太分布曲线陡峭或扁平程度,σ越小,曲线越陡峭;σ越大,曲线越平缓。
〔5〕u变换,为了便于描述和应用,常将正态变量作数据转换。
4.简述数学期望和方差各描述的是随机变量的什么特征。
答:
〔P62、64〕随机变量的期望值也称为平均值,它是随机变量取值的一种加权平均数,是随机变量分布的中心,它描述了随机变量取值的平均水平,而方差是各个数据与平均值之差的平方的平均数,方差用来衡量随机变量对其数学期望的偏离程度。
三、计算题
计算题1:
某车间生产的一批产品中,按照其质量规格可以分为一等品、二等品、三等品和次品四类,相应的概率为0.7,0.2,0.06,0.04,对应可产生的利润〔单位:
元〕为10,8,4,1,
1.〔1〕我们可以用说明指标来衡量该车间的生产效益?
〔2〕试求出该产品的平均利润。
解答:
〔P62〕〔1〕可以用期望值来衡量,随机变量的期望值也称平均值。
它是随机变量取值的一种加权平均数,是随机变量分布的中心。
〔2〕设平均利润为随机变量X,那么:
E(X)=10*0.7+8*0.2+4*0.06+1*0.04=8.88元
2.〔1〕除了上述指标外,还有什么指标来衡量所得到的统计数据?
〔2〕引入这些指标对数据的分析有何作用?
解答:
〔P62〕〔1〕方差、标准差。
〔2〕仅仅学了数学期望对随机变量的认识还是不够,我们还应该知道随机变量的取值对数学期望的偏离程度,即方差,这种偏离程度不仅可以反映一个随机变量取值的离散程度,还能衡量期望值的代表性大小。
计算题2:
设有两种投资方案,它们获得的利润如下表:
利润〔万元〕
100
200
300
概率
甲方案
0.4
0.2
0.4
乙方案
0.3
0.4
0.3
1.〔1〕计算甲、乙两种投资方案的期望。
〔2〕计算甲、乙两种投资方案的方差。
解答:
〔P62-64〕〔1〕E〔甲〕=100*0.4+200*0.2+300*0.4=200〔万元〕
E〔乙〕=100*0.3+200*0.4+300*0.3=200〔万元〕
〔2〕D〔甲〕=〔100-200〕²*0.4+〔200-200〕²*0.2+〔300-200〕²*0.4=8000
D〔乙〕=〔100-200〕²*0.3+〔200-200〕²*0.4+〔300-200〕²*0.3=6000
2.〔1〕试比拟甲乙两种投资方案哪种更好?
〔2〕如何运用期望和方差来比拟哪种方案更好?
解答:
〔P62-64〕〔1〕E〔甲〕=E〔乙〕,而D〔甲〕大于D〔乙〕,所以乙方案较好。
〔2〕比拟方案的优劣首先看方案的期望值即平均值,期望值大的方案较优,当期望值一样时要比拟两者的方差,方差是方案取值与期望值的偏离程度,方差越小,数据越集中,此时方案较优。
四、选答题
1.〔1〕试解释为什么要引入随机变量的概念?
〔2〕随机变量的特点主要是什么?
答:
〔P53-54〕
〔1〕在生产生活中,仅仅讨论随机事件的概率显然是不够的,为了更好地提醒随机现象的规律性,并利用数学分析的方法来描述。
这就需要把随机试验的结果数量化,即要用某一变量的不同取值来表示随机试验中出现的各种不同结果,这就是要引入随机变量的原因。
〔2〕总的来说随机变量具有三个特点:
随机性,在试验前只知道它可能取值的围,而预先不能确定具体取哪个值;
统计规律性,由于它的取值依赖于试验结果,而试验结果的出现是有一定概率的,因此随机变量的取值也有一定的概率;
它是定义在样本空间Ω上的实单值函数。
第3章时间序列分析
本章重点难点
1.时间序列的概念及其种类;
2.时间序列特征指标;
3.长期趋势变动分析与季节变动分析;
4.循环变动与不规那么变动分析。
学习目标
重点掌握:
1.时间序列特征指标及其计算;
2.长期趋势、季节变动、循环变动和不规那么变动的测定及其分析方法。
能够理解:
时间序列的概念及其种类。
一、选择题
1.某连锁店1月份至4月份的收入〔万元〕分别为3250,6532,2560,4689,那么该连锁店平均每个月的收入为〔〕万元。
A.4257.75B.3969.50
C.3250.00D.4689.00
2.从统计分析的角度看,以下选项中不属于循环变动的测定方法的是〔〕
A.剩余法B.直接法
C.循环平均法D.移动平均法
3.在对原时间序列拟合数学模型时,关于指标法以下说法恰当的是〔〕
A.假设原时间序列的逐期增长量大致相等,那么采用直线趋势模型
B.假设原时间序列的环比开展速度大致相等,那么采用二次曲线趋势模型
C.假设原时间序列的二级增长大致相等,那么采用修正指数曲线趋势模型
D.假设原时间序列的逐期增长量的环比开展速度大致相等,那么采用直线趋势模型
参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
A
D
A
二、问答题
1.时间序列分析中长期趋势的表现形式是多种多样的,常用的趋势线数学模型主要有哪几种?
答:
〔P93〕常用的趋势线数学模型有:
直线、指数曲线、二次曲线、修正指数曲线、逻辑曲线、龚珀茨曲线和双指数曲线。
2.反映时间序列变动特征的指标有几类?
答:
〔P80、85〕反映时间序列变动特征的指标有两类:
一类是反映时间序列水平变动的特征,又称为时间序列水平指标。
一般用来反映研究现象的变动量,具体包括平均开展水平、增长量和平均增长量三种指标。
另一类是反映时间序列的速度变动特征,又称为时间序列速度指标。
用来反映研究现象在动态上开展变动的相对程度或平均程度,具体包括开展速度,增长速度,平均开展速度和平均增长速度四种指标。
3.常见的时间序列的变动模型有哪些?
并说明这些模型之间的区别。
答:
〔P80〕按照长期趋势〔T〕,季节波动(S),循环波动(C),不规那么变动(I)的影响方式不同,时间序列可分为多种模型,其中最常见的有加法模型和乘法模型。
乘法模型:
Y=T*S*C*I
加法模型:
Y=T+S+C+I
乘法模型假定四个因素对现象开展有相互影响的作用,而加法模型那么假定各因素对现象开展的影响是相互独立的。
4.简述季节变动的含义及其特点。
答:
〔P79、101〕季节变动就是指受自然界更替影响而发生的年夏一年的有规律的变化,季节变动的特点有周期性、规律性、周期长度固定。
三、选答题
1.〔1〕简单季节模型与移动平均季节模型的区别是什么?
〔2〕简述移动平均季节模型的改良之处表达在什么地方。
答:
〔P111〕〔1〕简单季节模型与移动平均季节模型的区别在于简单季节模型未考虑到时间序列中的长期趋势变动因素。
〔2〕首先用移动平均法消除时间序列中随机因素变动,并在趋势变动的根底上再根据季节变动对预测值加以调整,这样可以到达更切合实际的效果。
2.〔1〕常用的长期趋势预测的测定方法有哪几种?
〔2〕试简述应用每种方法时应该注意哪几点?
答:
〔P90-93〕〔1〕常用的测定方法主要有时距扩大法、移动平均法、数字模型法。
〔2〕应用时距扩大法时应注意:
只能用于时期数列;
扩大后的各个时期的时距应该相等;
时距的大小要适中(即时距扩大程度要遵循事物开展的客观规律)。
应用移动平均法时应注意:
被移动平均的项数越多,修匀效果好;
移动平均所取项数,应考虑研究对象的周期;
如采用偶数项移动平均,需进展两次移动平均;
移动平均所取项数越多,所得趋势值项数那么越少;
移动平均的项数不宜过多。
应用数学模型法时应注意:
对原时间序列拟合数学模型时,要弄清原时间序列趋势的变动形态,然后在此根底上配合适宜的数学模型,以更准确地描述其长期趋势变动情况。
3.〔1〕我们研究季节变动的目的是什么?
〔2〕试解释趋势剔除法的含义。
答:
〔P101、103〕〔1〕季节变动时客观存在的,通过研究季节变动,可以认识其变动周期和变动规律性,给实际部门的生产经营活动通过决策依据。
〔2〕在具有明显的长期趋势变动的时间序列中,为了测定季节变动,必须首先将趋势变动因素在时间序列中的影响剔除。
先剔除长期趋势变动因素,后计算季节比率的方法,就是趋势剔除法。
4.〔1〕循环变动与长期趋势、季节变动之间有何区别?
〔2〕简述随即变动的测定方法。
答:
〔P113、115〕〔1〕循环变动常常存在于一个较长的时期中,它不同于长期趋势,所表现的不是朝着某一个方向持续上升或下降,而是从低到高,由从高到低的周而复始的近乎规律性的变动。
它也不同于季节变动,季节变动一般以一年、一季度或一个月为一周期,成因也比拟复杂,往往难以事先预知。
〔2〕对于一个具体时间序列,分别求得其中的长期趋势〔T〕,季节变动〔S〕和循环变动〔C〕,再依据乘法模型,分别从该模型中剔除长期趋势、季节变动和循环变动的影响,那么其剩余即为随