中考数学动点问题复习.docx

上传人:b****8 文档编号:9588735 上传时间:2023-02-05 格式:DOCX 页数:36 大小:525.69KB
下载 相关 举报
中考数学动点问题复习.docx_第1页
第1页 / 共36页
中考数学动点问题复习.docx_第2页
第2页 / 共36页
中考数学动点问题复习.docx_第3页
第3页 / 共36页
中考数学动点问题复习.docx_第4页
第4页 / 共36页
中考数学动点问题复习.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

中考数学动点问题复习.docx

《中考数学动点问题复习.docx》由会员分享,可在线阅读,更多相关《中考数学动点问题复习.docx(36页珍藏版)》请在冰豆网上搜索。

中考数学动点问题复习.docx

中考数学动点问题复习

中考数学复习

(一)动点型问题

一、中考专题诠释

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲

解决动点问题的关键是“动中求静”.

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲

考点一:

建立动点问题的函数解析式(或函数图像)

函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.

例1如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为(  )

A.

B.

C.

D.

对应训练

1.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(  )

A.

B.

C.

D.

考点二:

动态几何型题目

(一)点动问题.

例2如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是(  )

A.

B.

C.

D.

 

对应训练

2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

A.

B.

C.

D.

(二)线动问题

例3如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是(  )

A.

B.

C.

D.

对应训练

3.如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是(  )

A.

B.

C.

D.

(三)面动问题

例4如图所示:

边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为(  )

A.

B.

C.

D.

对应训练

4.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为(  )

A.

B.

C.

D.

考点三:

动点综合题

动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.

(一)因动点产生的等腰三角形问题

例1如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠

PDQ=90°.

(1)求ED、EC的长;

(2)若BP=2,求CQ的长;

(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.

图1备用图

 

例2如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

图1

 

例3如

图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.

(1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?

若存在,求点P的坐标;若不存在,请说明理由.

图1

 

例4如图1,已知一次函数y=-x+7与正比例函数

的图象交于点A,且与x轴交于点B.

(1)求点A和点B的坐标;

(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到

达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?

②是否存在以A、P、Q为顶点的三角形是等腰三角形?

若存在,求t的值;若不存在,请说明理由.

 

图1

 

例5如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式;

(2)若m=8,求x为何值时,y的值最大,最大值是多少?

(3)若

,要使△DEF为等腰三角形,m的值应为多少?

图1

 

例6如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.

(1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.

①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?

若不变,求出△PMN的周长;若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?

若存在,请求出所有满足条件的x的值;若不存在,请说明理由.

图1图2图3

 

因动点产生的直角三角形问题

例1如图1,抛物线

与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.

(1)求点A、B、C的坐标;

(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;

(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.

图1

 

例2如图1,抛物线

与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.

(1)求点A、B的坐标;

(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;

(3)若直线l过

点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

图1

 

例3在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).

(1)当k=-2时,求反比例函数的解析式;

(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

 

例4设直线l1:

y=k1x+b1与l2:

y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线.

(1)已知

直线①

;②

;③

;④

和点C(0,2),则直线_______和_______是点C的直角线(填序号即可);

(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式.

 

图1

 

例5在平面直角坐标系xOy中,抛物线

与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.

(1)求点B的坐标;

(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动).

①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;

②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点

Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.

图1

 

例6如图1,已知A、B是线段MN上的两点,

.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设

(1)求x的取值范围;

(2)若△ABC为直角三角形,求x的值;

(3)探究:

△ABC的最大面积?

图1

 

例7如图1,直线

和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).

(1)试说明△ABC是等腰三角形;

(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.

①求S与t的函数关系式;

②设点M在线段OB上运动时,是否存在S=4的情形?

若存在,求出对应的t值;若不存在请说明理由;

③在运动过程中,当△MON为直角三角形时,求t的值.

图1

 

例8如图1,直线

和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).

(1)试说明△ABC是等腰三角形;

(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.

①求S与t的函数关系式;

②设点M在线段OB上运动时,是否存在S=4的情形?

若存在,求出对应的t值;若不存在请说明理由;

③在运动过程中,当△MON为直角三角形时,求t的值.

图1

 

课后练习

(一)

一、选择题

1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为(  )

A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5

2.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是(  )

A.当x=3时,EC<EMB.当y=9时,EC>EM

C.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变

3.如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为(  )

A.

B.

C.

D.

4.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是(  )

A.2B.3C.4D.5

5.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.

(1)求当t为何值时,点Q与点D重合?

(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;

(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.

 

6.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

 

(1)求直线AB的函数解析式;

(2)当点P在线段AB(不包括A,B两点)上时.

①求证:

∠BDE=∠ADP;

②设DE=x,DF=y.请求出y关于x的函数解析式;

(3)请你探究:

点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:

1?

如果存在,求出此时点P的坐标:

如果不存在,请说明理由.

 

7.如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2

3),∠BCO=60°,OH⊥BC于点H。

动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度。

设点P运动的时间为t秒。

⑴求OH的长;

⑵若△OPQ的面积为S(平方单位)。

求S与t之间的函数关系式。

并求t为何值时,△OPQ的面积最大,最大值是多少?

⑶设PQ与OB交于点M。

①当△OPM,为等腰三角形时,求⑵中S的值。

②探究线段OM长度的最大值是多少,直接写出结论。

 

8.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135。

点P从点B出发沿折线段BA

-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E。

点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止。

设点P、Q运动的时间是t秒(t>0)。

⑴当点P到达终点C时,求t的值,并指出此时BQ的长;⑵当点P运动到AD上时,t为何值能使PQ∥DC?

⑶设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)

⑷△PQE能否成为直角三角形?

若能,写出t的取值范围;若不能,请说明理由。

 

9.如图所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上。

过点B、C作直线l。

将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E。

⑴将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为S,S关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4。

①求梯形上底AB的长及直角梯形OABC的面积;

②当2<t<4时,求S关于t的函数解析式;

⑵在第⑴题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直线AB上是否存在点P,使△PDE为等腰直角三角形?

若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由。

 

因动点产生的线段和差问题

例1在平面直角坐标系中,已知点A(-

2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.

(1)如图1

,求点E的坐标;

(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.

①设AA′=

m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;

②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

图1图2

 

例2如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4)、O(0,0)、

B(2,0)三点.

(1)求抛物线y=ax

2+bx+c的解析式;

(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

图1

 

例3如图1,在平面直角坐

标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.

(1)求直线AC的解析式及B、D两点的坐标;

(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:

随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?

若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;

(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.

图1

 

因动点产生的面积问题

例1如图1,已知抛物线

(b、c是常数,且c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).

(1)b=______,点B的横坐标为_______(上述结果均用含c的代数式表示);

(2)连结BC,过点A作直线AE//BC,与抛物线交于点E.点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;

(3)在

(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC.设△PBC的面积为S.

①求S的取值范围;

②若△PBC的面积S为正整数,则这样的△PBC共有_____个.

图1

 

例2如图1,在平面直角坐标系中放置一直角三角板,其顶

点为A(0,1)、B(2,0)、O(0,0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.

(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;

(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积的4倍?

若存在,请求出点P的坐标;若不存在,请说明理由;

(3)在

(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?

并写出它的两条性质.

图1

 

例3如图1,在平面直角坐标系中,直线

与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.

(1)求a、b及sin∠ACP的值;

(2)设点P的横坐标为m.

①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;

②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?

若存在,直接写出m的值;若不存在,请说明理由.

图1

 

例4如图1,直线l经过点A(1,0),且与双曲线

(x>0)交于点B(2,1).过点

(p>1)作x轴的平行线分别交曲线

(x>0)和

(x<0)于M、N两点.

(1)求m的值及直线l的解析式;

(2)若点P在直线y=2上,求证:

△PMB∽△PNA;

(3)是否存在实数p,使得S△AMN=4S△AMP?

若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

图1

 

例5如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线

交折线OAB于点E.

(1)记△ODE的面积为S,求S与b的函数关系式;

(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?

若不变,求出重叠部分的面积;若改变,请说明理由.

图1

 

例6如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.

(1)求线段AD的长;

(2)若EF⊥AB,当点E在斜边AB上移动时,

①求y与x的函数关系式(写出自变量x的取值范围);

②当x取何值时,y有最大值?

并求出最大值.

(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?

若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

图1备用图

 

例7如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标

(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在

(1)中当t为何值时,

△OPQ的面积最大,并求此时P点的坐标.

(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

图1图2

 

因动点产生的梯形问题

例1已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.

(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;

(2)记该抛物线的对称轴为直线l,点B关于直线l的

对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形.

①求

点D的坐标;

②将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1