ImageVerifierCode 换一换
格式:DOCX , 页数:36 ,大小:525.69KB ,
资源ID:9588735      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9588735.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学动点问题复习.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考数学动点问题复习.docx

1、中考数学动点问题复习中考数学复习(一)动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动

2、过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时

3、间t的函数图象大致为()A B C D对应训练1如图,O的圆心在定角(0180)的角平分线上运动,且O与的两边相切,图中阴影部分的面积S关于O的半径r(r0)变化的函数图象大致是() A B C D考点二:动态几何型题目(一)点动问题例2 如图,梯形ABCD中,ABDC,DEAB,CFAB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止设运动时间为t秒,y=SEPF,则y与t的函数图象大致是()A B C D对应训练2如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2设弦AP的长为x,APO的面积为y,则下列图象中,能表示

4、y与x的函数关系的图象大致是()A BC D(二)线动问题例3 如右图所示,已知等腰梯形ABCD,ADBC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A BC D对应训练3如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A BC D(三)面动问题 例4 如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,

5、那么s与t的大致图象应为()A B C D对应训练4如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A B C D考点三:动点综合题动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.(一)因动点产生的等腰三角形问题例1 如图1,在RtABC中,A90,AB6,AC8,点D为边BC的中点,DEBC交边AC于点E,点P为射线AB上的一动点,点Q为边

6、AC上的一动点,且PDQ90(1)求ED、EC的长;(2)若BP2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若PDF为等腰三角形,求BP的长图1 备用图例2 如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 例3 如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经

7、过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由图1例4 如图1,已知一次函数yx7与正比例函数 的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线l/y轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒当t为何值时,以A、P、R为顶点的

8、三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由 图1例5 如图1,在矩形ABCD中,ABm(m是大于0的常数),BC8,E为线段BC上的动点(不与B、C重合)连结DE,作EFDE,EF与射线BA交于点F,设CEx,BFy(1)求y关于x的函数关系式; (2)若m8,求x为何值时,y的值最大,最大值是多少?(3)若,要使DEF为等腰三角形,m的值应为多少?图1例 6如图1,在等腰梯形ABCD中,AD/BC,E是AB的中点,过点E作EF/BC交CD于点F,AB4,BC6,B60(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点

9、P作PMEF交BC于M,过M作MN/AB交折线ADC于N,连结PN,设EPx当点N在线段AD上时(如图2),PMN的形状是否发生改变?若不变,求出PMN的周长;若改变,请说明理由;当点N在线段DC上时(如图3),是否存在点P,使PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由 图1 图2 图3因动点产生的直角三角形问题例1 如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、B、C的坐标;(2)

10、当点P在线段OB上运动时,直线l分别交BD、BC于点M、N试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;(3)当点P在线段EB上运动时,是否存在点Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由图1 例2 如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式图1 例3

11、在平面直角坐标系中,反比例函数与二次函数yk(x2x1)的图象交于点A(1,k)和点B(1,k)(1)当k2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值例4设直线l1:yk1xb1与l2:yk2xb2,若l1l2,垂足为H,则称直线l1与l2是点H的直角线(1)已知直线;和点C(0,2),则直线_和_是点C的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过

12、B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式 图1例5 在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得EDPE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒

13、2个单位(当点Q到达点O时停止运动,点P也停止运动)过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FMQF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动)若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值图1例6 如图1,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?图1例 7如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1

14、)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式; 设点M在线段OB上运动时,是否存在S4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值图1例8 如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一

15、个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式; 设点M在线段OB上运动时,是否存在S4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值图1课后练习(一)一、选择题1如图,RtABC中,ACB=90,ABC=60,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着ABA的方向运动,设E点的运动时间为t秒(0t6),连接DE,当BDE是直角三角形时,t的值为()A2 B2.5或3.5 C3.5或4.5 D2或3.5或4.52图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例

16、函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A当x=3时,ECEM B当y=9时,ECEMC当x增大时,ECCF的值增大 D当y增大时,BEDF的值不变3如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的RtGEF的一边GF重合正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动设正方形的运动时间为t秒,正方形ABCD与RtGEF重叠部分面积为s,则s关于t的函数图象为()ABCD4如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上若以A、B、C三点为顶点的三角

17、形是等腰三角形,则点C的个数是()A2 B3 C4 D5 5如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6)动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0t5)以P为圆心,PA长为半径的P与AB、OA的另一个交点分别为C、D,连接CD、QC(1)求当t为何值时,点Q与点D重合?(2)设QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若P与线段QC只有一个交点,请直接写出t的取值范围6如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0)

18、,点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD过P,D,B三点作Q与y轴的另一个交点为E,延长DQ交Q于点F,连结EF,BF(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时求证:BDE=ADP;设DE=x,DF=y请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由7.如图,直角梯形 OABC 中,ABOC,O 为坐标原点,点 A 在 y 轴正半轴上,点 C 在 x 轴正半轴上,点 B坐标为(2,2 3

19、 ),BCO60,OHBC 于点 H。动点 P 从点 H 出发,沿线段 HO 向点 O 运动,动点Q 从点 O 出发,沿线段 OA 向点 A 运动,两点同时出发,速度都为每秒 1 个单位长度。设点 P 运动的时间 为 t 秒。求 OH 的长;若OPQ 的面积为 S(平方单位)。 求 S 与 t 之间的函数关系式。并求 t 为何值时,OPQ 的面积最大, 最大值是多少?设 PQ 与 OB 交于点 M。 当OPM,为等腰三角形时,求中 S 的值。 探究线段 OM 长度的最大值是多少,直接写出结论。8.如图,在等腰梯形 ABCD 中,ADBC,ABDC50,AD75,BC135。点 P 从点 B 出

20、发沿折线段 BAADDC 以每秒 5 个单位长的速度向点 C 匀速运动;点 Q 从点 C 出发沿线段 CB 方向以每秒 3 个单位长 的速度匀速运动,过点 Q 向上作射线 QKBC,交折线段 CDDAAB 于点 E。点 P、Q 同时开始运动, 当点 P 与点 C 重合时停止运动,点 Q 也随之停止。设点 P、Q 运动的时间是 t 秒(t0)。当点 P 到达终点 C 时,求 t 的值,并指出此时 BQ 的长; 当点 P 运动到 AD 上时,t 为何值能使 PQDC ?设射线 QK 扫过梯形 ABCD 的面积为 S,分别求出点 E 运动到 CD、DA 上时,S 与 t 的函数关系式;(不 必写出

21、t 的取值范围)PQE 能否成为直角三角形?若能,写出 t 的取值范围;若不能,请说明理由。9.如图所示,直角梯形 OABC 的顶点 A、C 分别在 y 轴正半轴与 x 轴负半轴上。过点 B、C 作直线 l。将直线 l 平移,平移后的直线 l 与 x 轴交于点 D,与 y 轴交于点 E。将直线 l 向右平移,设平移距离 CD 为 t(t0),直角梯形 OABC 被直线 l 扫过的面积(图中阴影部份)为 S, S 关于 t 的函数图象如图 2 所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为 4。 求梯形上底 AB 的长及直角梯形 OABC 的面积;当 2t4 时,求 S

22、 关于 t 的函数解析式;在第题的条件下,当直线 l 向左或向右平移时(包括 l 与直线 BC 重合),在直线 AB 上是否存在点 P, 使PDE 为等腰直角三角形?若存在,请求出所有满足条件的点 P 的坐标;若不存在,请说明理由。因动点产生的线段和差问题 例1 在平面直角坐标系中,已知点A(2,0),B(0,4),点E在OB上,且OAEOBA(1)如图1,求点E的坐标;(2)如图2,将AEO沿x轴向右平移得到AEO,连结AB、BE设AAm,其中0m2,使用含m的式子表示AB2BE2,并求出使AB2BE2取得最小值时点E的坐标;当ABBE取得最小值时,求点E的坐标(直接写出结果即可)图1 图2

23、例2 如图1,在平面直角坐标系中,抛物线yax2bxc经过A(2, 4 )、O(0, 0)、B(2, 0)三点(1)求抛物线yax2bxc的解析式;(2)若点M是该抛物线对称轴上的一点,求AMOM的最小值图1例3 如图1,在平面直角坐标系中,抛物线yx22x3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l/AC交抛物线于点Q试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找

24、一点M,使BDM的周长最小,求出点M的坐标图1因动点产生的面积问题例1 如图1,已知抛物线(b、c是常数,且c0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(1,0)(1)b_,点B的横坐标为_(上述结果均用含c的代数式表示);(2)连结BC,过点A作直线AE/BC,与抛物线交于点E点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC设PBC的面积为S求S的取值范围;若PBC的面积S为正整数,则这样的PBC共有_个图1例 2 如图1,在平面直角坐标系中放

25、置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90,得到三角形ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PBAB的面积是ABO面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出它的两条性质图1例 3 如图1,在平面直角坐标系中,直线与抛物线yax2bx3交于A、B两点,点A在x轴上,点B的纵坐标为3点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线A

26、B于点C,作PDAB于点D(1)求a、b及sinACP的值;(2)设点P的横坐标为m用含m的代数式表示线段PD的长,并求出线段PD长的最大值;连结PB,线段PC把PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为910?若存在,直接写出m的值;若不存在,请说明理由图1例 4如图1,直线l经过点A(1,0),且与双曲线(x0)交于点B(2,1)过点(p1)作x轴的平行线分别交曲线(x0)和(x0)于M、N两点(1)求m的值及直线l的解析式;(2)若点P在直线y2上,求证:PMBPNA;(3)是否存在实数p,使得SAMN4SAMP?若存在,请求出所有满足条件的p的值;若不存在,请

27、说明理由图1例5 如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1)点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由图1例 6 如图1,在ABC中,C90,AC3,BC4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与ABC的直角边相交于点F,设AEx,AEF的面积为y(1)求线段AD

28、的长;(2)若EFAB,当点E在斜边AB上移动时,求y与x的函数关系式(写出自变量x的取值范围);当x取何值时,y有最大值?并求出最大值(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由 图1 备用图例7 如图1,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时,

29、点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标(4)如果点P、Q保持原速度速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由 图1 图2因动点产生的梯形问题例1 已知直线y3x3分别与x轴、y轴交于点A,B,抛物线yax22xc经过点A,B(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形求点D的坐标;将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y3x3交于点

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1