外文翻译冷凝器和蒸发器的热力设计制定和应用.docx

上传人:b****7 文档编号:9563362 上传时间:2023-02-05 格式:DOCX 页数:21 大小:534.80KB
下载 相关 举报
外文翻译冷凝器和蒸发器的热力设计制定和应用.docx_第1页
第1页 / 共21页
外文翻译冷凝器和蒸发器的热力设计制定和应用.docx_第2页
第2页 / 共21页
外文翻译冷凝器和蒸发器的热力设计制定和应用.docx_第3页
第3页 / 共21页
外文翻译冷凝器和蒸发器的热力设计制定和应用.docx_第4页
第4页 / 共21页
外文翻译冷凝器和蒸发器的热力设计制定和应用.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

外文翻译冷凝器和蒸发器的热力设计制定和应用.docx

《外文翻译冷凝器和蒸发器的热力设计制定和应用.docx》由会员分享,可在线阅读,更多相关《外文翻译冷凝器和蒸发器的热力设计制定和应用.docx(21页珍藏版)》请在冰豆网上搜索。

外文翻译冷凝器和蒸发器的热力设计制定和应用.docx

外文翻译冷凝器和蒸发器的热力设计制定和应用

附录B:

参考英文文献与译文

Thermodynamicdesignofcondensersandevaporators:

Formulationandapplications

ChristianJ.L.Hermes

abstract

Thispaperassessesthetherm-hydraulicdesignapproachintroducedinapreviouspublication(Hermes,2012)forcondensersandevaporatorsaimedatminimumentropygeneration.Analgebraicmodelwhichexpressesthedimensionlessrateofentropygenerationasafunctionofthenumberoftransferunits,thefluidproperties,thethermal-hydraulic

characteristics,andtheoperatingconditionsisderived.Casestudiesarecarriedoutwithdifferentheatexchangerconfigurgitationsforsmall-capacityrefrigerationapplications.Thetheoreticalanalysisledtotheconclusionthatahigheffectivenessheatexchangerdoesnotnecessarilyprovidethebestthermal-hydraulicdesignforcondenserandevaporatorcoils,whentheratesofentropygenerationduetoheattransferandfluidfrictionareofthesame

orderofmagnitude.Theanalysisalsoindicatedthatahighaspectratioheatexchangerproducesaloweramountofentropythanalowaspectratioone.Conceptionthermodynamiccondenseretdesse´evaporate:

formulationetapplications.

Keywords:

floatinghead;heatexchanger;design;industry

1.Introduction

CondensersandevaporatorsareheatexchangerswithfairlyuniformwalltemperatureemployedinawiderangeofHVACRproducts,spanningfromhouseholdtoindustrialapplications.Ingeneral,theyaredesignedaimingatacplishingacertainheattransferdutyatthepenaltyofpumpingpower.Therearetwowell-establishedmethodsavailableforthethermalheatexchangerdesign,thelog-meantemperaturedifference(LMTD)andtheeffectiveness/numberoftransferunits(ε-NTU)approach(Kakac¸andLiu,2002;Shahand

Siliculose,2003).Thesecondhasbeenpreferredtotheformerforthesakeofpactheatexchangerdesignastheeffectiveness(ε),definedastheratiobetweentheactualheat

transferrateandthemaximumamountthatcanbetransferred,providesa1st-lawcriteriontoranktheheatexchanger.performance,whereasthenumberoftransferunits(NTU)paresthethermalsizeoftheheatexchangerwithitscapacityofheatingorcoolingfluid.Furthermore,theε-NTUapproachavoidsthecumbersomeiterativesolutionrequiredbytheLMTDforoutlettemperaturecalculations.Nonetheless,neitherε-NTUorLMTDapproachesaresuitabletoaddresstheheattransfer/pumpingpowertrade-off,whichisthecruxforabalancedheatexchangerdesign.Forthispurpose,Bajan(1987)establishedtheso-calledthermodynamicdesignmethod,laterrenamedasentropygenerationminimizationmethod(Bajan,1996),whichbalancesthethermodynamicirreversibilitiesduetotheheattransferwithafinitetemperaturedifferencetothoseassociatedwiththeviscousfluidflow,thusprovidinga2nd-lawcriterionthathasbeenwidelyusedforthesakeofheatexchangerdesignandoptimization(SanandJan,2000;Leprousetal.,2005;AchaeanandWongwises,2008;Mishapetal.,2009;Kotciogluetal.,2010;Pussolietal.,2012;Hermesetal.,2012).However,themodelsadoptedinthosestudiesdonotprovideastraightforwardindicationofhowthedesignparameters(geometry,fluidproperties,workingconditions)affecttherateofentropy

generation.Theyalsorequireplexnumericalsolutions,beingthereforenotsuitableforback-of-the-envelopecalculationsintheindustrialenvironment.Inarecentpublication,Hermes(2012)advancedanexplicit,algebraicformulationwhichexpressesthedimensionlessrateofentropygenerationasafunctionofthenumberoftransferunits,thefluidproperties,thethermalhydrauliccharacteristics(jandfcurves),andtheoperating.

conditions(heattransferduty,corevelocity,andcoilsurfacetemperature)forheatexchangerswithuniformwalltemperature.Anexpressionfortheoptimumheatexchangereffectiveness,basedontheworkingconditions,heatexchangergeometryandfluidproperties,wasalsopresented.ThepresentpaperisthereforeaimedatassessingtheformulationintroducedbyHermes(2012)fordesigningcondensersandevaporatorsforrefrigerationsystemsspanningfromhouse-holdapplication,whichamountsw10%oftheelectricalenergyconsumedworldwide(MaloandSilva,2010).

2.Mathematicalformulation

Ingeneral,condensersandevaporatorsforrefrigerationapplicationsaredesignedconsideringthecoilfloodedwithtwo-phaserefrigerant,andalsoawalltemperatureequaltotherefrigeranttemperature(BarbarossaandHermes,2008),insuchawayasthetemperatureprofilesalongthestreamsarethoserepresentedinFig.1.Inaddition,theouter(e.g.,air,water,brine)sideheattransfercoefficientandthephysicalpropertiesareassumedtobeconstant.Therefore,theheattransferrateifcalculatedfrom:

〔1〕

whereisthemassflowrate,Ti,ToandTsaretheinlet,outletandsurfacetemperatures,respectively,Q¼hAs(TseTm)istheheattransferrate,Tmisthemeanflowtemperatureovertheheattransferarea,As,andεistheheatexchangereffectiveness,calculatedfrom(KaysandLondon,1984):

〔2〕

whereNTU¼hAs/mcpisthenumberoftransferunits.Thepressuredrop,ontheotherhand,canbecalculatedfrom(KaysandLondon,1984):

〔3〕

wherefisthefrictionfactor,ucisthevelocityintheminimumflowpassage,Ac,andthesubscripts“i〞and“o〞refertotheheatexchangerinletandoutletports,respectively.One

shouldnotethatEqs.

(1)and(3)canbelinkedtoeachotherthroughthefollowingapproximationfortheGibbsrelation,

〔4〕

whereTmz(TiþTo)/2,andtheentropyvariation,soesi,iscalculatedfromthe2nd-lawofThermodynamics,

〔5〕

wherethefirsttermintheright-handsideaccountsforthereversibleentropytransportwithheat(_Q=Ts),whereas_Sgistheirreversibleentropygenerationduetoboththeheat

transferwithfinitetemperaturedifferenceandtheviscousow.SubstitutingEqs.

(1),(3)and(5)intoEq.(4),itfollowsthat:

NS¼

〔6〕

whereNSisthedimensionlessrateofentropygeneration.TheerrorsassociatedtotheapproximationusedinEq.(4)aremarginal:

notingthatDTm<20Kinmostsmall-capacity

refrigerationapplications,itfollowsthatthedifferencebetweentheexactandapproximatedmeantemperatureneverexceeds1K,whichinturnaffectsthedimensionlessentropygenerationbylessthan1%.NownotingthatbothcondensersandevaporatorsaredesignedtoprovideaheattransferdutysubjectedtoflowrateandfaceareaconstraintsEq.(6)canbere-writtenasfollows(Hermes,2012):

〔7〕

AndQ¼(ToeTi)/TsadimensionlesstemperaturedifferencewithbothToandTiknownfromtheapplication.Oneshouldnotethatthefirstandsecondtermsoftheright-handsideofEq.(7)standforthedimensionlessentropygenerationratesassociatedwiththeheattransferwithfinitetemperaturedifferenceandtheviscousflow,respectively.TheoptimumheatexchangerdesignNTUoptthatminimizestherateofentropygenerationisobtainedfrom(Hermes,2012):

〔8〕

dropeffects,whichruletheentropygenerationforthelowaspectratiodesigns,areattenuatedforlowNTUvalueswheretheentropygenerationduetofinitetemperaturedifferenceis

Dominant.

4.Casestudies

Forthesakeofheatexchangerdesign,Eq.(8)hastobesolvedconcurrentlywithε¼(ToeTi)/(TseTi)asthecoilsurfacetemperature,Ts,mustbefreetovarythusensuringthatQ(andso_Qand_m)isconstrained.However,thesolutionisimplicit.forTs,thusrequiringaniterativecalculationprocedure:

aguessedTsvalueisneededtocalculatetheeffectivenessandNTU¼eln(1eε),whichisusedinEq.(8)withj¼j(Re)andf¼f(Re)curves,andalsowiththedimensionlesscorevelocitytoeoutwithQ,whichinturnisusedtorecalculateTsuntilconvergenceisachieved.Firstlyconsideranair-suppliedtube-fincondenserforsmall-capacityrefrigerationappliancesrunningunderthefollowingworkingconditions:

_Q¼1kW,_V¼1000m3h1Ti¼300K(Waltrichetal.,2011;Hermesetal.,2012).Letsassumetwoheatexchangerconfigurations:

(i)circulartubeswithflatfins(i.e.,KaysandLondon’ssurface8.0-3/8T),whosethermal-hydrauliccharacteristicsarej¼0.16$Re0.4

tubesandfins(KaysandLondon’ssurfaceCF-8.72),whosethermal-hydrauliccharacteristicsarej¼0.22$Re0.4f¼0.20$Re0.2,s¼0.524andDh¼3.93mm.AlsonotethatPrz0.7forair.Fig.4parestheperformancecharacteristics(jandfcurves)ofsurfaces8.0-3/8TandCF-8.72asfunctionsofRe¼rucDh/m.Fig.5paresthedimensionlessentropygeneration

ObservedforbothsurfacesasafunctionofNTU.Acurveofε¼ε(NTU),whichthesameforbothsurfaces,isalsoplottedtobeusedasareference.Itcanbeclearlyseenthatthe(ε,NTU)designwhichminimizestherateofentropygenerationis(0.61,0.95)forsurface8.0-3/8Tand(0.57,0.81)forsurfaceCF-8.72.Itcanalsobenotedthatthecircular-finsurface

showedahigherrateofentropygenerationforallNTUspan,whichismostlyduetotheviscousfluidfloweffectassurfaceCF-8.72hasahigherfrictionfactorthansurface8.0-

3/8TforthesameReynoldsnumber(seeFig.4).ForlowNTUvalues,wheretheentropygenerationisruledbyNS,DT,bothsurfacesshowedsimilarNSvaluesastheirj-curvesareclose(seeFig.4).Fig.6paresthreedifferentcondenserdesignsconsid-eringsurface8.0-3/8Tandfaceareasvaryingfrom0.025to0.1m2runningunderthesameworkingconditions.Theheatexchangerlengthwasalsovariedinordertoacmodatetheheattransfersurfaceareafordifferentfaceareas.Foravertical,constantNTUline(i.e.sameheattransferarea),itcanbeclearlyobservedthataheatexchangerdesignwithhighaspectratio(higherfacearea,smallerlengthintheflowdirection)producesasignificantlyloweramountofentropyinparisont

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1