大地测量学基础复习题及参考答案.docx

上传人:b****8 文档编号:9559706 上传时间:2023-02-05 格式:DOCX 页数:27 大小:74.60KB
下载 相关 举报
大地测量学基础复习题及参考答案.docx_第1页
第1页 / 共27页
大地测量学基础复习题及参考答案.docx_第2页
第2页 / 共27页
大地测量学基础复习题及参考答案.docx_第3页
第3页 / 共27页
大地测量学基础复习题及参考答案.docx_第4页
第4页 / 共27页
大地测量学基础复习题及参考答案.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

大地测量学基础复习题及参考答案.docx

《大地测量学基础复习题及参考答案.docx》由会员分享,可在线阅读,更多相关《大地测量学基础复习题及参考答案.docx(27页珍藏版)》请在冰豆网上搜索。

大地测量学基础复习题及参考答案.docx

大地测量学基础复习题及参考答案

《大地测量基础》复习题及参考答案

一、名词解释:

1、子午圈:

过椭球面上一点的子午面同椭球面相截形成的闭合圈。

2、卯酉圈:

过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。

3、椭园偏心率:

第一偏心率

第二偏心率

4、大地坐标系:

以大地经度、大地纬度和大地高来表示点的位置的坐标系。

5、空间坐标系:

以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。

6、法截线:

过椭球面上一点的法线所作的法截面与椭球面相截形成圈。

7、相对法截线:

设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。

8、大地线:

椭球面上两点之间的最短线。

9、垂线偏差改正:

将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。

10、标高差改正:

由于照准点高度而引起的方向偏差改正。

11、截面差改正:

将法截弧方向化为大地线方向所加的改正。

12、起始方位角的归算:

将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角。

13、大地元素:

椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大地方位角。

14、大地主题解算:

如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。

15、大地主题正算:

已知P1点的大地坐标,P1至P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角。

16、大地主题反算:

如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。

17、地图投影:

将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。

18、高斯投影:

横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。

19、平面子午线收敛角:

直角坐标纵轴及横轴分别与子午线和平行圈投影间的夹角。

20、方向改化:

将大地线的投影曲线改化成其弦线所加的改正。

21、长度比:

椭球面上某点的一微分元素与其投影面上的相应微分元素的比值。

22、参心坐标系:

依据参考椭球所建立的坐标系(以参心为原点)。

23、地心坐标系:

依据总参考椭球所建立的坐标系(以质心为原点)。

24、站心坐标系:

以测站为原点,测站上的法线(垂线)为Z轴(指向天顶为正),子午线方向为x轴(向北为正),y轴与x,z轴垂直构成左手系。

25、垂线偏差:

地面一点上的重力向量g和相应椭球面上法线向量n之间的

夹角定义为该点的垂线偏差。

26、大地水准面差距:

大地水准面与椭球面在某点上的高差;当大地水准面

超过椭球面时N>0,当大地水准面低于椭球面时N<0。

27、正高:

地面点沿实际重力线到大地水准面的距离。

28、正常高:

地面点沿正常重力线到似大地水准面的距离。

29、大地高:

地面点沿法线到椭球面的距离。

30、参考椭球:

具有确定参数,经过局部定位和定向,同某一地区大地水准

面最佳拟合的地球椭球。

31、总地球椭球:

除了满足地心定位和双平行条件外,在确定椭球参数时能

使它在全球范围内与大地体最密合的地球椭球。

32.岁差:

地球绕地抽旋转,可以看做巨大的陀螺旋转,由日、月等天体的影响,类似于旋转陀螺在重力场中的运动,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角ε=°,旋转周期为26000年,这种运动称为岁差。

是地轴方向相对于空间的长周期运动。

33.章动:

月球绕地球旋转的轨道称为白道,由于白道对于黄道有约5°的倾斜,这使得月球引力产生转矩的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加年的短周期圆周运动,振幅为″,这种现象称为章动。

34.极动:

地球自转轴除了上述空间的变化外,还存在相对于地球体自身内部的相对位置的变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极动。

35.时间间隔:

是两个时刻点之间的差值,指某一现象的持续时间的长短。

36.时刻:

是时间轴上的坐标点,是相对时间轴的原点而言的,是指发生某一现象的瞬间。

37.

二、填空题:

1、旋转椭球的形状和大小是由子午椭园的5个基本几何参数来决定的,它们分别是长半轴、短半轴、扁率、第一偏心率、第二偏心率。

2、决定旋转椭球的形状和大小,只需知道5个参数中的2个参数就够了,但其中至少有一个长度元素。

3、传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954年北京坐标系应用是克拉索夫斯基椭球,1980年国家大地坐标系应用的是75国际椭球(1975年国际大地测量协会推荐)椭球,而全球定位系统(GPS)应用的是WGS-84(17届国际大地测量与地球物理联合会推荐)椭球。

4、两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指M和N。

5、椭球面上任意一点的平均曲率半径R等于该点子午曲率半径M和卯酉曲率半径N的几何平均值。

6、椭球面上子午线弧长计算公式推导中,从赤道开始到任意纬度B的平行圈之间的弧长表示为:

X=

7、平行圈弧公式表示为:

r=x=NcosB=

8、克莱洛定理(克莱洛方程)表达式为lnsinA+lnr=lnC(r*inA=C)

9、某一大地线常数等于椭球半径与该大地线穿越赤道时的大地方位角的正弦乘积或者等于该点大地线上具有最大纬度的那一点的平行圈半径。

10、拉普拉斯方程的表达式为

11、投影变形一般分为角度变形、长度变形和面积变形。

12、地图投影中有等角投影、等距投影和等面积投影等。

13、高斯投影是横轴椭圆柱等角投影,保证了投影的角度的不变性,图形的相似形性,以及在某点各方向上的长度比的同一性。

14、采用分带投影,既限制了长度变形,又保证了在不同投影带中采用相同的简便公式进行由于变形引起的各项改正数的计算。

15、椭球面到平面的正形投影的一般公式表达为:

16、由平面到椭球面正形投影一般条件表达式为:

17、由于高斯投影是按带投影的,在各投影带内经差l不大,l/p是一微小量。

故可将函数

展开为经差l的幂级数。

18、由于高斯投影区域不大,其中y值和椭球半径相比也很小,因此可将

展开为y的幂级数。

19、高斯投影正算公式是在中央子午线

点展开l的幂级数,

高斯投影反算公式是在中央子午线

点展开y的幂级数。

20、一个三角形的三内角的角度改正值之和应等于该三角形的球面角超的负值。

21、长度比只与点的位置有关,而与点的方向无关。

22、高斯—克吕格投影类中,当m0=1时,称为高斯-克吕格投影,当m0=时,称为横轴墨卡托投影(UTM投影)。

23、写出工程测量中几种可能采用的直角坐标系名称(写出其中三种):

国家3度带高斯正形投影平面直角坐标系 、抵偿投影面的3度带高斯正形投影平面直角坐标系、任意带高斯正形投影平面直角坐标系。

24、所谓建立大地坐标系,就是指确定椭球的形状与大小,椭球中心以及椭球坐标轴的方向(定向)。

25、椭球定位可分为局部定位和地心定位。

26、参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与地球的相关位置确定下来。

27、参考椭球的定位和定向,应选择六个独立参数,即表示参考椭球定位的三个平移参数和表示参考椭球定向的三个绕坐标轴的旋转参数。

28、参考椭球定位与定向的方法可分为两种,即一点定位和多点定位。

29、参心大地坐标建立的标志是参考椭球参数和大地原点上的其算数据的确立。

30、不同大地坐标系的换算,包含9个参数,它们分别是三个平移参数、

三个旋转参数、一个尺度参数和两个地球椭球元素变化参数。

31、三角网中的条件方程式,一类是与起算数据无关的,称为独立网条件,包括图形条件、水平条件和极条件。

32、三角网中的条件方程式,一类是与起算数据有关的,称为起算数据条件或强制符合条件条件,包括方位角(固定角)、基线(固定边)及纵横坐标条件。

33、大地经度为120°09′的点,位于6°带的第21带,其中央子午线经度为123。

34、大地经度为132°25′的点,位于6°带的第23带,其中央子午线经度为135。

35、大地线方向归算到弦线方向时,顺时针为正,逆时针为负。

36、地面上所有水平方向的观测值均以垂线为依据,而在椭球上则要求以该点的法线为依据。

37、高斯平面子午线收敛角由子午线投影曲线量至纵坐标线,顺时针为正,逆时针为负。

38、天文方位角

是以测站的垂线为依据的。

三、选择与判断题:

1、包含椭球面一点的法线,可以作2法截面,不同方向的法截弧的曲率半径4。

①唯一一个②多个

③相同④不同

2、子午法截弧是2方向,其方位角为4。

①东西②南北③任意

④00或1800⑤900或2700⑥任意角度

3、卯西法截弧是1方向,其方位角为5。

①东西②南北③任意

④00或1800⑤900或2700⑥任意角度

4、任意法截弧的曲半径RA不仅与点的纬度B有关,而且还与过该点的法截弧的3有关。

①经度

②坐标

③方位角A

5、主曲率半径M是任意法截弧曲率半径RA的2。

①极大值②极小值③平均值

6、主曲率半径N是任意法截弧曲率半径RA的 1  。

①极大值②极小值③平均值

7、M、R、N三个曲率半径间的关系可表示为1。

①N>R>M②R>M>N③M>R>N④R>N>M

8、单位纬差的子午线弧长随纬度升高而2,单位经差的平行圈弧长则随纬度升高而1。

①缩小②增长③相等④不变

9、某点纬度愈高,其法线与椭球短轴的交点愈2,即法截线偏3。

①高②低③上④下

10、垂线偏差改正的数值主要与1和3有关。

①测站点的垂线偏差②照准点的高程

③观测方向天顶距④测站点到照准点距离

11、标高差改正的数值主要与2有关。

①测站点的垂线偏差②照准点的高程

③观测方向天顶距④测站点到照准点距离

12、截面差改正数值主要与4有关。

①测站点的垂线偏差②照准点的高程

③观测方向天顶距④测站点到照准点距离

13、方向改正中,三等和四等三角测量4。

1不加截面差改正,应加入垂线偏差改正和标高差改正;

2不加垂线偏差改正和截面差改正,应加入标高差改正;

3应加入三差改正;④不加三差改正;

14、方向改正中,一等三角测量3。

1不加截面差改正,应加入垂线偏差改正和标高差改正;

2不加垂线偏差改正和截面差改正,应加入标高差改正;

3应加入三差改正;④不加三差改正;

15、地图投影问题也就是1。

①建立椭球面元素与投影面相对应元素间的解析关系式

②建立大地水准面与参考椭球面相应元素的解析关系式

③建立大地坐标与空间坐标间的转换关系

16、方向改化2。

1只适用于一、二等三角测量加入

2在一、二、三、四等三角测量中均加入

③只在三、四等三角测量中加入

17、设两点间大地线长度为

,在高斯平面上投影长度为s,平面上两点间直线长度为D,则1。

①SD②sD③sS④Ss

18、长度比只与点的2有关,而与点的1无关。

①方向②位置③长度变形④距离

19、我国采用的1954年北京坐标系应用的是2。

①1975年国际椭球参数②克拉索夫斯基椭球参数

③WGS-84椭球参数④贝塞尔椭球参数

20、我国采用的1980图家大地坐标系应用的是1。

①1975年国际椭球参数②克拉索夫斯基椭球参数

③WGS-84椭球参数④贝塞尔椭球参数

21、子午圈曲率半径M等于3。

22、椭球面上任意一点的平均曲率半径R等于4。

23、子午圈是大地线(对)。

24、不同大地坐标系间的变换包含7个参数(错)。

25、平行圈是大地线(错)。

26、定向角就是测站上起始方向的方位角(对)。

27、高斯投影中的3度带中央子午线一定是6度带中央子午线,而6度带中央子午线不一定是3度带中央子午线(错)。

28、高斯投影中的6度带中央子午线一定是3度带中央子午线,而3度带中央子午线不一定是6度带中央子午线(对)。

29、控制测量外业的基准面是4。

①大地水准面②参考椭球面③法截面④水准面

30、控制测量计算的基准面是2。

①大地水准面②参考椭球面③法截面④高斯投影面

31、同一点曲率半径最长的是(2)。

①子午线曲率半径②卯酉圈曲率半径③平均曲率半径

④方位角为450的法截线曲率半径

32、我国采用的高程系是(3)。

①正高高程系②近似正高高程系

③正常高高程系④动高高程系

四、问答题:

1、大地坐标系是大地测量的基本坐标系,其优点表现在什么方面?

要点:

以旋转椭球体建立的大地坐标系,由于旋转椭球体是一个规则的数学曲面,可以进行严密的数学计算,而且所推算的元素(长度、角度)同大地水准面上的相应元素非常接近。

2、什么是大地线?

简述大地线的性质。

要点:

椭球面上两点间的最短程曲线叫做大地线。

大地线是一条空间曲面曲线;大地线是两点间唯一最短线,而且位于相对法截线之间,并靠近正法截线,与正法截线间的夹角为

;大地线与法截线长度之差只有百万分之一毫米,所以在实际计算中,这样的差异可以忽略不计;在椭球面上进行量测计算时,应当以两点间的大地线为依据。

在地面上测得的距离,方向等,应当归化到相应的大地线的方向和距离。

何为大地线微分方程?

写出其表达形式。

所谓大地线微分方程,是指表达dL,dB,dA各与dS的关系式。

3、简述三角测量中,各等级三角测量应如何加入三差改正?

要点:

在一般情况下,一等三角测量应加入三差改正,二等三角测量应加垂线偏差改正和标高改正,而不加截面差改正;三等三角测量可不加三差改正,但当

时或

时,则应加垂线偏差改正和标高改正,这就是说,在特殊情况下,应该根据测区的实际情况作具体分析,然后再作出加还是不加入改正的规定。

4、简述大地主题解算直接解法的基本思想。

要点:

直接解算极三角形P1NP2。

比如正算问题时,已知数据是边长S,P1N及角A12,有三角形解算可得到另外的元素l,β及P2N,进而求得未知量

常用的直接解法是白塞尔解法。

5、简述大地主题解算间接解法的基本思想。

要点:

根据大地线微分方程,解出经度差dl,纬度差dB及方位角之差dA

再求出未知量

常用的间接解法有高斯平均引数公式。

6、简述高斯平均引数公式的优点。

要点:

基本思想是首先把勒让德尔级数在P1点展开改在大地线长度中点M展开,以使级数公式项数减少,收敛快,精度高;其次考虑到求解中点M的复杂性,将M点用大地线两端点平均方位角相对应的m点来代替,并借助迭代计算,便可顺利地实现大地主题正算。

7、试述控制测量对地图投影的基本要求。

要点:

首先应当采用等角投影;

其次,在所采用的正形投影中,还要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。

最后,要求投影能够方便的按照分带进行,并能按高精度的、简单的、同样的计算公式和用表把各带连成整体。

8、什么是高斯投影?

为何采用分带投影?

要点:

高斯投影又称横轴椭圆柱等角投影。

它是想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭圆柱体中心,然后用一定投影方式,将中央子午线两侧各一定经度范围内的地区投影到椭球柱面上,再将此柱面展开即成为投影面。

由于采用了同样法则的分带投影,这既限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行由于变形引起的各项改正的计算,并且带与带间的互相换算也能采用相同的公式和方法进行。

9、简述正形投影区别于其它投影的特殊性质。

要点:

在正形投影中,长度比与方向无关,这就成为推倒正形投影一般条件的基本出发点。

10、叙述高斯投影正算公式中应满足的三个条件。

要点:

中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质,即正形投影条件。

11、叙述高斯投影反算公式中应满足的三个条件。

要点:

x坐标轴投影成中央子午线,是投影的对称轴;x轴上的长度投影保持不变;正形投影条件,即高斯面上的角度投影到椭球面上后角度没有变形,仍然相等。

12、试述高斯投影正、反算间接换带的基本思路。

要点:

这种方法的实质是把椭球面上的大地坐标作为过度坐标。

首先把某投影带内有关点的平面坐标(x,y)1利用高斯投影反算公式换算成椭球面上的大地坐标(B,l),进而得到L=L0+l,然后再由大地坐标(B,l),利用投影正算公式换算成相邻带的平面坐标(x,y)2在计算时,要根据第2带的中央子午线来计算经差l,亦即此时l=L-L0。

13、试述工程测量中投影面和投影带选择的基本出发点。

要点:

1)在满足工程测量精度要求的前提下,为使得测量结果得一测多用,这时应采用国家统一3度带高斯平面直角坐标系,将观测结果归算至参考椭球面上。

2)当边长的两次归算投影改正不能满足要求时,为保证工程测量结果的直接利用和计算的方便,可以采用任意带的独立高斯投影平面直角坐标系,归算结果可以自己选定。

可以采用抵偿投影面的高斯正形投影;任意带高斯正形投影;具有高程抵偿面的任意带高斯正形投影。

14、控制测量概算的主要目的是什么?

要点:

1)系统地检查外业成果质量,把好质量关;2)将地面上观测成果归算到高斯平面上,为平差计算作好数据准备工作;3)计算各控制点的资用坐标,为其它急需提供未经平差的控制测量基础数据。

15、简述椭球定向的平行条件和目的。

要点:

平行条件:

椭球短轴平行于地球自转轴;大地起始子午面平行于天文起始子午面。

目的在于简化大地坐标、大地方位角同天文坐标、天文方位角之间的换算。

16、大地测量学研究内容

(1)研究建立和维持高科技水平的工程和国家水平控制网和精密水准网

的原理和方法,以满足国民经济和国防建设以及地学科学研究的需要。

(2)

研究获得高精度测量成果的精密仪器和科学的使用方法。

(3)研究地球表面

测量成果向椭球及平面的数学投影变换及有关问题的测量计算。

(4)研究高

精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法、控制

测量数据库的建立及应用等。

17、三角网、导线网各自观测量及优缺点

三角网:

观测网中的全部或大部分方向值和部分边长

优点:

图形简单,网的精度较高,有较多检核条件,易于发现观测中的

粗差,便于计算。

缺点:

在平原地区或隐蔽地区易受障碍物的影响,布网困难大,有时不

得不建造高觇标

导线网:

观测角度和边长

优点:

(1)网中各点上的方向数较少,除节点外只有两个方向,因而受

通视要求限制较小,易于选点和降低觇标高度,甚至无须造标。

(2)导线网

的图形非常灵活,选点时可根据具体情况随时改变。

(3)网中边长都是直接

测定的,因此边长精度较均匀。

缺点:

导线网中的多余观测数较同样规模的三角网要少,有时不易发现

观测值中的粗差,因而可靠性不高。

18、工程测量水平控制网的布设原则

(1)分级布网,逐级控制

(2)要有足够的精度

(3)要有足够的密度

(4)要有统一的规格

19、精密测角的一般原则

(1)观测应在目标成像清晰、稳定有利于观测时间进行,以提高照准精

度和减小旁折光的影响;

(2)观测前应认真调好焦距,消除视差;(3)配置

度盘;(4)上下半测回照准目标次序应相反,并使观测每一目标的操作时间

大致相同;(5)为了克服或减弱在操作仪器的过程中带动水平度盘位移的误

差,要求每半测回开始观测前,照准部按规定方向先预转1-2周;(6)使用

照准部微动螺旋和测微螺旋时,其最后旋转方向应为旋进;(7)观测过程中

应保持照准部水准器气泡居中,若气泡偏离水准器中央一格时,应在测回间

重新整平仪器。

20、方向观测法一测站观测程序

(1)设在测站上有1,2,3,……,n个方向要观测,首先应选定边长适

中、通视良好、成像清晰稳定的方向作为观测的起始方向。

(2)上半测回用盘左位置先照准零方向,然后按顺时针方向转动照准部

依次照准方向2,3,……,n再闭合到方向1,并分别在水平度盘上读数。

(3)下半测回用盘右位置,仍然先照准零方向1,然后按逆时针方向转动

照准部依相反的次序照准方向n,……,3,2,1,并分别在水平度盘上读数。

21、电子经纬仪按测角原理分类:

光栅度盘和编码读盘

22、T2,T3经纬仪配置度盘的方法,计算竖直角及指标差公式

T2s=180/n+10T3s=180/n+4

T2α左=90-L+i,α右=R-270-i,i=(L+R-360)/2

T3α左=2(L-90)-i,α右=2(90-R)+i,i=L+R-180

23、用于测距的电磁波种类按测距方法不同测距仪分类:

脉冲式和相位式

24、相位法测距仪确定N值的方法

25、精密水准测量的一般原则

1、仪器距前、后视水准标尺的距离应尽量相等,其差应小于规定的限

值;2、在相邻两测站上,应按奇、偶数测站的观测程序进行观测,对于往

返奇数测站按后前前后、偶数测站按前后后前的观测程序在相邻测站上交替进行;3、每一段的往测与返测,其测站数均应为偶数;4、每一测段的水准测量路线应进行往测和返测;5、一个测段的水准测量路线的往测和返测应在不同的气象条件下进行;6、同一测站上观测时,不得两次调焦;转动仪器的倾斜螺旋和测微螺旋,其最后旋转方向均应为旋进;7、水准测量的观测工作间歇时,最好能结束在固定的水准点上。

26、精密水准测量测站观测程序:

往测时,奇数测站照准水准标尺分划的顺序为:

后视标尺的基本分划

前视标尺的基本分划

前视标尺的辅助分划

后视标尺的辅助分划

往测时,偶数测站照准水准标尺分划的顺序为:

前视标尺的基本分划

后视标尺的基本分划

后视标尺的辅助分划

前视标尺的辅助分划

返测时,奇、偶数测站照准标尺的顺序分别与往测偶、奇数测站相同。

27、精密水准仪测微器工作原理,计算视线高的方法。

(1)平行玻璃板安装在物镜前,它与测微尺之间用带有齿条的传动杆

连接,当转动测微器手轮时,平行玻璃板绕其旋转轴作俯仰,传动杆拉动测微尺前后移动;

(2)当平行玻璃板与水平视线正交时,测微尺上指标分划线指在中央

读数5mm处,此时水平视线在标尺上不一定正好指在整cm分划线的读数处;

(3)转动测微器手轮,牵引平行玻璃板倾动,视线经过倾斜的平行玻

璃板时产生上(下)平移,可以使原来并不对准标尺上整cm分划的视线,精确对准某一整cm分划,从而读到一个整分划读数;

(4)同时平行玻璃板倾斜时,传动杆拉动测微尺前后移动,使视线在

尺上的平行移动量由测微尺记录下来,测微尺的读数通过光路成像在测微尺读数窗内。

28、i角检

展开阅读全文
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1