六年级数学专题详解分数百分数应用题教师版.docx
《六年级数学专题详解分数百分数应用题教师版.docx》由会员分享,可在线阅读,更多相关《六年级数学专题详解分数百分数应用题教师版.docx(21页珍藏版)》请在冰豆网上搜索。
六年级数学专题详解分数百分数应用题教师版
分数百分数应用题
例题精讲
【例1】(小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?
1【解析】方法一:
把甲所带的钱视为单位“”,由题意,乙花去元后所剩的钱与甲所带钱的一样多,那么元钱正好是甲所带钱的,那么甲原来带了(元),乙原来带了(元).
方法二:
设甲所带的钱数为份,则甲和乙都还剩份,所以每份是(元),则甲原来带了(元),乙原来带了(元).
【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?
2【解析】根据题意画出线段图,找出量率对应:
题中所给的已知数量虽然没有直接的对应关系,但从中可以看出,如果女工去掉5人就和男工人数的(1-)相对应,因此总人数也应去掉5人,相应的与男工人数的(1-+1)相对应。
因此男工有:
(152-5)÷(1-+1)=77(名)女工有:
152-77=75(名)答:
男共有77名,女工有75名。
【巩固】五年级有学生人,选出男生的和名女生参加团体操,这时剩下的男生和女生人数一样多,问:
五年级女生有多少人?
3【解析】男生人数为(人),女生有:
(人).
【例2】甲、乙两个书架共有本书,从甲书架借出,从乙书架借出以后,甲书架是乙书架的倍还多本,问乙书架原有多少本书?
1【解析】
这个题目的难点就在于甲乙的数目同时发生了变化,变化之后的关系是两倍还多本,也就是说:
甲的比乙的的两倍还多本,如果能够正确地理解和转化这个条件,这道题也就迎刃而解了,从上图中不难看出,“甲的比乙的的两倍还多本”其实也就是“甲的比乙的多本”,如果同时扩大两倍,他们之间的关系就变成了“甲的比乙多本”,结合“甲乙的和为本”这个条件,这个问题就变成了一个简单的和倍问题了。
,,(本),,
(本)…………甲的书本数目
(本)………………………………乙的书本数目
方法二:
设甲原有x本书,,解得,则乙为500本。
【例3】五年级上学期男、女生共有人,这一学期男生增加,女生增加,共增加了人.这一学年六年级男、女生各有多少人?
1【解析】方法一:
此题我们用假设法来解答.假设这一学期五年级男、女生人数都增加,那么增加的人数应为(人),这与实际增加的人相差(人).相差人的原因是把女生增加的看成计算了,即少算了原女生人数的,也就是说这人正好相当于上学期女生人数的,可求出上学期女生的人数:
(人),男生人数为:
(人),这学年女生的人数:
(人),这学年男生的人数:
(人).
方法二:
本题可以看成男生1份+女生1份=13(人),那么男生20份+女生20份=13×20=260(人),对比分析可以看出:
300—260=40(人)对应男生的25—20=5(份),所以男生有40÷5×(25+1)=208(人),女生有300+13—208=105(人)。
【巩固】把金放在水里称,其重量减轻,把银放在水里称,其重量减轻.现有一块金银合金重克,放在水里称共减轻了克,问这块合金含金、银各多少克?
2【解析】方法一:
设合金含金克,则银有克.依题意,列方程得:
,
解得,所以这块合金中金有克,银有克.
方法二:
本题可以看成金1份+银1份=50(克),那么金10份+银10份=50×10=500(克),对比分析可以看出:
770—500=270(克)对应金的19—10=9(份),所以金有270÷9×19=570(人),银有770—570=200(人)。
【例4】光明小学有学生人,其中女生的与男生的参加了课外活动小组,剩下的人没有参加.这所小学有男、女生各多少人?
1【解析】(用假设法)假设男生、女生都有的人参加了课外活动小组,那么共有(人),比现在多出了(人),这多出的人即为女生的,所以女生人数为
(人),男生人数为(人).
【巩固】二年级两个班共有学生人,其中少先队员有人,又知一班少先队员占全班人数的,二班少先队员占全班人数的,求两个班各有多少人?
2【解析】本题与鸡兔同笼问题相似,根据鸡兔同笼问题的假设法,可求得一班人数为(人),那么二班人数为(人).
【例5】盒子里有红,黄两种玻璃球,红球为黄球个数的,如果每次取出个红球,个黄球,若干次后,盒子里还剩个红球,个黄球,那么盒子里原有________个玻璃球.
1【解析】由于红球与黄球个数比为,所以若每次取个红球,个黄球,则最后剩下的红球与黄球的个数比仍为,即最后剩下个红球,个黄球,而实际上是每次取个红球,个黄球,最后剩个红球,个黄球,每次少取了3个黄球,最后多剩下45个黄球,所以一共取了次,所以球的总数为个.
【巩固】甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?
2【解析】分别用甲参、甲未、乙参、乙未表示甲、乙班参加和未参加的人数,则:
甲参+甲未=乙参+乙未,
【例6】(年第七届“希望杯”五年级一试)工厂生产一批产品,原计划15天完成。
实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务。
则这批产品有件。
1【解析】设原计划每天生产份,则实际每天生产份加件,而根据题意这批产品共有份,所以实际每天生产份,所以份与份加件的和相同,所以每份就是件,所以这批产品共有件.或用方程来解.
【例7】有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?
1【解析】设每堆棋子为100个有x堆棋子,那么每堆中白子为28个,黑子为72个,那走一半棋子且为黑子时,还剩白子为28x个,黑子为(72x—50)个,所以列方程为:
解得,所以有4堆。
【例8】我从飞机的舷窗向外看去,看见了部分海岛、部分白云以及不大的一块海域,假定白云占窗口画面的一半,它遮住了岛的,因此岛在窗口画面上只占,问被白云遮住的那部分海洋占画面的多少?
1【解析】5/12.
【例9】养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的倍.鸭比鸡少几分之几?
1【解析】方法一:
把鸭看成单位“”,那么鸡就是,鸭比鸡少:
(此时的单位“1”是鸡的只数).
方法二:
设鸭有份,则鸡有份,所以鸭比鸡少.
【巩固】某校男生比女生多,女生比男生少几分之几?
2【解析】方法一:
男生比女生多,则男生有,女生比男生少.
方法二:
设女生有份,则男生有份,所以女生比男生少.
【例10】学校阅览室里有36名学生在看书,其中女生占,后来又有几名女生来看书,这时女生人数占所有看书人数的.问后来又有几名女生来看书?
1【解析】把总人数视为“1”,紧抓住男生人数不变进行解答.男生人数是人,后来阅览室的总人数是(名),后来有(名)女生进来.
【巩固】(2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的,后来又调入男职工若干人,调入后男工人数占总人数的,这时工厂共有职工人.
2【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为人,调入后女职工占总人数的,所以现在工厂共有职工人.
【巩固】有甲、乙两桶油,甲桶油的质量是乙桶的倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的倍,乙桶中原有油千克.
3【解析】原来甲桶油的质量是两桶油总质量的,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的,由于总质量不变,所以两桶油的总质量为千克,乙桶中原有油千克.
【例11】
(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?
(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?
1【解析】
(1)设二月份产量是1,所以元月份产量为:
,三月份产量为:
,因为>0.9,所以三月份比元月份减产了
(2)设商品的原价是1,涨价后为,降价15%为:
,现价和原价比较为:
0.9775<1,所以价格比较后是价降低了。
【例12】某校三年级有学生240人,比四年级多,比五年级少.四年级、五年级各多少人?
【分析】比四年级,可以设四年级为4份,(一般情况下可设“比”、“是”、等词后面的实际量的份数为分数的分母),则三年级为5份恰有240人,所以一每份就是,所以四年级就有484192人,同理可设五年级有5份,则三年级有4份恰是240人,所以五年级就有300人.
【巩固】把个人分成四队,一队人数是二队人数的倍,一队人数是三队人数的倍,那么四队有多少个人?
1【解析】方法一:
设一队的人数是“”,那么二队人数是:
,三队的人数是:
,,因此,一、二、三队之和是:
一队人数,因为人数是整数,一队人数一定是的整数倍,而三个队的人数之和是(某一整数),因为这是以内的数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:
(人).
方法二:
设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队的份数之和必须是的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有人(人).
【例13】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的,美术班人数相当于另外两个班人数的,体育班有人,音乐班和美术班各有多少人?
1【解析】条件可以化为:
音乐班的人数是所有班人数的,美术班的学生人数是所有班人数的,所以体育班的人数是所有班人数的,所以所有班的人数为人,其中音乐班有人,美术班有人.
【巩固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的,甲加工零件数是乙、丙加工零件总数的,则甲、丙加工的零件数分别为个、个.
2【解析】把乙加工的零件数看作1,则丙加工的零件数为,甲加工的零件数为,由于甲比乙多加工20个,所以乙加工了个,甲、丙加工的零件数分别为个、个.
【例14】王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的,李先生的年龄是另外三人年龄和的,赵先生的年龄是其他三人年龄和的,杨先生26岁,你知道王先生多少岁吗?
1【解析】方法一:
要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“”是不同的,这就是所说的单位“”不统一,因此,解答此题的关键便是抓不变量,统一单位“”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“”,则单位“”就统一了.那么王先生的年龄就是四人年龄和的,李先生的年龄就是四人年龄和的,赵先生的年龄就是四人年龄和的(这些过程就是所谓的转化单位“”).则杨先生的年龄就是四人年龄和的.由此便可求出四人的年龄和:
(岁),王先生的年龄为:
(岁).
方法二:
设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.
【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的,乙队筑的路是其他三个队的,丙队筑的路是其他三个队的,丁队筑了多少米?
2【解析】甲队筑的路是其他三个队的,所以甲队筑的路占总公路长的;
乙队筑的