PID比例积分微分控制方法原理浅释及相关资料搜集.docx

上传人:b****8 文档编号:9485905 上传时间:2023-02-04 格式:DOCX 页数:20 大小:30.53KB
下载 相关 举报
PID比例积分微分控制方法原理浅释及相关资料搜集.docx_第1页
第1页 / 共20页
PID比例积分微分控制方法原理浅释及相关资料搜集.docx_第2页
第2页 / 共20页
PID比例积分微分控制方法原理浅释及相关资料搜集.docx_第3页
第3页 / 共20页
PID比例积分微分控制方法原理浅释及相关资料搜集.docx_第4页
第4页 / 共20页
PID比例积分微分控制方法原理浅释及相关资料搜集.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

PID比例积分微分控制方法原理浅释及相关资料搜集.docx

《PID比例积分微分控制方法原理浅释及相关资料搜集.docx》由会员分享,可在线阅读,更多相关《PID比例积分微分控制方法原理浅释及相关资料搜集.docx(20页珍藏版)》请在冰豆网上搜索。

PID比例积分微分控制方法原理浅释及相关资料搜集.docx

PID比例积分微分控制方法原理浅释及相关资料搜集

2010-05-1321:

39:

22|  分类:

软件技术编程开|  标签:

|字号大中小 订阅

PID原理和调节(转贴)

 

  目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

  一个控制系统包括控制器﹑传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

  不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

    

  目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

       可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统

开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

3、阶跃响应

阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-stateerror)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。

4、PID控制的原理和特点

  在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

(1)比例(P)控制

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

(2)积分(I)控制

  在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

(3)微分(D)控制

  在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

  自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

5、PID控制器的参数整定

  PID控制器的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行

PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

 

 

==============================================================================

PID控制算法

2008年07月15日星期二14:

05

1,PID是一个闭环控制算法。

因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。

比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

2,PID是比例(P)、积分(I)、微分(D)控制算法。

但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。

我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。

现在知道这只是最简单的闭环控制算法。

3,比例(P)、积分(I)、微分(D)控制算法各有作用:

    比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;

    积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;

    微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。

但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。

积分和微分都不能单独起作用,必须与比例控制配合。

4,控制器的P,I,D项选择。

下面将常用的各种控制规律的控制特点简单归纳一下:

   1、比例控制规律P:

采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。

它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

如:

金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

   2、比例积分控制规律(PI):

在工程中比例积分控制规律是应用最广泛的一种控制规律。

积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。

如:

在主线窑头重油换向室中F1401到F1419号枪的重油流量控制系统;油泵房供油管流量控制系统;退火窑各区温度调节系统等。

   3、比例微分控制规律(PD):

微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果。

因此,对于控制通道的时间常数或容量滞后较大的场合,为了提高系统的稳定性,减小动态偏差等可选用比例微分控制规律。

如:

加热型温度控制、成分控制。

需要说明一点,对于那些纯滞后较大的区域里,微分项是无能为力,而在测量信号有噪声或周期性振动的系统,则也不宜采用微分控制。

如:

大窑玻璃液位的控制。

   4、例积分微分控制规律(PID):

PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳定性。

它适用于控制通道时间常数或容量滞后较大、控制要求较高的场合。

如温度控制、成分控制等。

   鉴于D规律的作用,我们还必须了解时间滞后的概念,时间滞后包括容量滞后与纯滞后。

其中容量滞后通常又包括:

测量滞后和传送滞后。

测量滞后是检测元件在检测时需要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。

而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后。

纯滞后是相对与测量滞后的,在工业上,大多的纯滞后是由于物料传输所致,如:

大窑玻璃液位,在投料机动作到核子液位仪检测需要很长的一段时间。

   总之,控制规律的选用要根据过程特性和工艺要求来选取,决不是说PID控制规律在任何情况下都具有较好的控制性能,不分场合都采用是不明智的。

如果这样做,只会给其它工作增加复杂性,并给参数整定带来困难。

当采用PID控制器还达不到工艺要求,则需要考虑其它的控制方案。

如串级控制、前馈控制、大滞后控制等。

5,公式:

数值pid的计算:

6,问题。

Kp,Ti,Td三个参数的设定是PID控制算法的关键问题。

一般说来编程时只能设定他们的大概数值,并在系统运行时通过反复调试来确定最佳值。

因此调试阶段程序须得能随时修改和记忆这三个参数。

7,参数的自整定。

在某些应用场合,比如通用仪表行业,系统的工作对象是不确定的,不同的对象就得采用不同的参数值,没法为用户设定参数,就引入参数自整定的概念。

实质就是在首次使用时,通过N次测量为新的工作对象寻找一套参数,并记忆下来作为以后工作的依据。

8,pid算法流程图:

 

====================================================================================================

 

数字PID控制算法

2009-12-3120:

02

首先,将连续的系统离散化。

计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此,连续PID控制算法不能直接使用,需要采用离散化的方法。

在计算机PID控制中,使用的是数字PID控制器。

采样周期T为1ms,采用Z变换对G(S)进行离散化,离散化后的被控对象为:

Transferfunction:

z^2-z+

z^3-z^2+z-

可得系统的差分方程:

y(k)=-den

(2)*y_1-den(3)*y_2-den(4)*y_3+num

(2)*u_1+num(3)*u_2+num(4)*u_3;

num=[0]

den=[]

在输入信号为单位阶跃信号时,运行附录2的数字PID程序,可得系统的响应如下:

在PID参数:

kp=10;ki=3000;kd=0;调节时间<;无稳态误差,超调量4%>2%。

其中超调量过大不满足系统的设计要求。

利用Matlab/Simulink软件,构建了电机控制系统的速度仿真模型。

通过仿真结果可以看出系统能平稳运行,具有较好的静、动态特性。

在此仿真模型基础上,可以十分便捷地实现进行参数选择、调整及仿真。

因此,可以从整体角度出发对伺服系统整体参数的优化和调整进行研究。

也为实际伺服系统的设计和调试提供了新的思路

数字PID程序

%PIDController

clearall;

closeall;

ts=;

sys=tf([281711930],[11501202111730]);

dsys=c2d(sys,ts,'z');%连续离散化

[num,den]=tfdata(dsys,'v');

u_1=;u_2=;u_3=;

y_1=;y_2=;y_3=;

x=[0,0,0]';

error_1=0;

fork=1:

1:

1000

time(k)=k*ts;

kp=10;ki=3000;kd=0;

rin(k)=1;%StepSignal

u(k)=kp*x

(1)+kd*x

(2)+ki*x(3);%PIDController

%Restrictingtheoutputofcontroller

ifu(k)>=10

u(k)=10;

end

ifu(k)<=-10

u(k)=-10;

end

%Linearmodel

yout(k)=-den

(2)*y_1-den(3)*y_2-den(4)*y_3+num

(2)*u_1+num(3)*u_2+num(4)*u_3;

error(k)=rin(k)-yout(k);

%Returnofparameters

u_3=u_2;u_2=u_1;u_1=u(k);

y_3=y_2;y_2=y_1;y_1=yout(k);

x

(1)=error(k);%CalculatingP

x

(2)=(error(k)-error_1)/ts;%CalculatingD

x(3)=x(3)+error(k)*ts;%CalculatingI

error_1=error(k);

end

figure

(1);

plot(time,rin,'b',time,yout,'r');

xlabel('time(s)'),ylabel('rin,yout');

title('单位阶跃响应曲线')

gridminor

 

 

 

====================================================================================================

 

增量式PID控制算法

2009-07-2311:

16

(转载出处)当执行机构需要的不是控制量的绝对值,而是控制量的增量(例如去驱动步进电动机)时,需要用PID的“增量算法”。

    增量式PID控制算法可以通过(2-4)式推导出。

由(2-4)可以得到控制器的第k-1个采样时刻的输出值为:

(2-5)

将(2-4)与(2-5)相减并整理,就可以得到增量式PID控制算法公式为:

(2-6)

其中

       由(2-6)可以看出,如果计算机控制系统采用恒定的采样周期T,一旦确定A、B、C,只要使用前后三次测量的偏差值,就可以由(2-6)求出控制量。

增量式PID控制算法与位置式PID算法(2-4)相比,计算量小得多,因此在实际中得到广泛的应用。

位置式PID控制算法也可以通过增量式控制算法推出递推计算公式:

(2-7)

(2-7)就是目前在计算机控制中广泛应用的数字递推PID控制算法。

增量式PID控制算法C51程序

/*====================================================================================================

PIDFunction

ThePID(比例、积分、微分)functionisusedinmainly

controlapplications.PIDCalcperformsoneiterationofthePID

algorithm.

WhilethePIDfunctionworks,mainisjustadummyprogramshowing

atypicalusage.

=====================================================================================================*/

typedefstructPID

{

intSetPoint;

....

1.PID调试步骤

  没有一种控制算法比PID调节规律更有效、更方便的了。

现在一些时髦点的调节器基本源自PID。

甚至可以这样说:

PID调节器是其它控制调节算法的基础。

  为什么PID应用如此广泛、又长久不衰?

因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。

调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

  由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。

这就给使用者带来相当的麻烦,特别是对初学者。

下面简单介绍一下调试PID参数的一般步骤:

  1.负反馈

  自动控制理论也被称为负反馈控制理论。

首先检查系统接线,确定系统的反馈为负反馈。

例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

其余系统同此方法。

  2.PID调试一般原则

  a.在输出不振荡时,增大比例增益P。

  b.在输出不振荡时,减小积分时间常数Ti。

  c.在输出不振荡时,增大微分时间常数Td。

  3.一般步骤

  a.确定比例增益P

  确定比例增益P时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

  b.确定积分时间常数Ti

  比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

积分时间常数Ti调试完成。

  c.确定积分时间常数Td

  积分时间常数Td一般不用设定,为0即可。

若要设定,与确定P和Ti的方法相同,取不振荡时的30%。

  d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。

控制简介

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

   1、开环控制系统

  开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

  2、闭环控制系统

  闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

  3、阶跃响应

  阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 教育学心理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1