年产50万吨苯乙烯工艺设计已附翻译.docx

上传人:b****7 文档编号:9262735 上传时间:2023-02-03 格式:DOCX 页数:97 大小:371.50KB
下载 相关 举报
年产50万吨苯乙烯工艺设计已附翻译.docx_第1页
第1页 / 共97页
年产50万吨苯乙烯工艺设计已附翻译.docx_第2页
第2页 / 共97页
年产50万吨苯乙烯工艺设计已附翻译.docx_第3页
第3页 / 共97页
年产50万吨苯乙烯工艺设计已附翻译.docx_第4页
第4页 / 共97页
年产50万吨苯乙烯工艺设计已附翻译.docx_第5页
第5页 / 共97页
点击查看更多>>
下载资源
资源描述

年产50万吨苯乙烯工艺设计已附翻译.docx

《年产50万吨苯乙烯工艺设计已附翻译.docx》由会员分享,可在线阅读,更多相关《年产50万吨苯乙烯工艺设计已附翻译.docx(97页珍藏版)》请在冰豆网上搜索。

年产50万吨苯乙烯工艺设计已附翻译.docx

年产50万吨苯乙烯工艺设计已附翻译

第1章引言

1.1苯乙烯的性质和用途

苯乙烯,分子式c8H8,结构式c6H5CH二CH2,是不饱和芳烃最简单、最重要的成员,广泛用作生产塑料和合成橡胶的原料。

如结晶型苯乙烯、橡胶改性抗冲聚苯乙烯、丙烯腈-丁二烯-苯乙烯三聚体(ABS、苯乙烯-丙烯腈共聚体(SAN、苯乙烯-顺丁烯二酸酐共聚体(SMA和丁苯橡胶(SBR)。

苯乙烯(SM是含有饱和侧链的一种简单芳烃,是基本有机化工的重要产品之一。

苯乙烯为无色透明液体,常温下具有辛辣香味,易燃。

苯乙烯难溶于水,25T时其溶解度为0.066%。

苯乙烯溶于甲醇、乙醇、乙醚等溶剂中。

苯乙烯在空气中允许浓度为0.1ml/L。

浓度过高、接触时间过长则对人体有一定的危害。

苯乙烯在高温下容易裂解和燃烧。

苯乙烯蒸汽与空气混合能形成爆炸性混合物,其爆炸范围为1.1〜6.01%(体积分数)。

苯乙烯(SM具有乙烯基烯烃的性质,反应性能极强,苯乙烯暴露于空气中,易被氧化而成为醛及酮类。

苯乙烯从结构上看是不对称取代物,乙烯基因带有极性而易于聚合。

在高于100C时即进行聚合,甚至在室温下也可产生缓慢的聚合。

因此,苯乙烯单体在贮存和运输中都必须加入阻聚剂,并注意用惰性气体密封,不使其与空气接触。

苯乙烯(SM是合成高分子工业的重要单体,它不但能自聚为聚苯乙烯树脂,也易与丙烯腈共聚为AS塑料,与丁二烯共聚为丁苯橡胶,与丁二烯、丙烯腈共聚为ABS塑料,还能与顺丁烯二酸酐、乙二醇、邻苯二甲酸酐等共聚成聚酯树脂等。

由苯乙烯共聚的塑料可加工成为各种日常生活用品和工程塑料,用途极为广

泛。

目前,其生产总量的三分之二用于生产聚苯乙烯,三分之一用于生产各种塑料和橡胶。

世界苯乙烯生产能力在1996年已达1900万吨,目前全世界苯乙烯产能约为2150〜2250万吨。

1.2原料的主要性质与用途

1.2.1乙苯的主要性质

乙苯是无色液体,具有芳香气味,可溶于乙醇、苯、四氯化碳和乙醚,几乎不溶于水,易燃易爆,对皮肤、眼睛、粘膜有刺激性,在空气中最大允许浓度为100PPM乙苯侧链易被氧化,氧化产物随氧化剂的强弱及反应条件的不同而异。

在强氧化剂(如高锰酸钾)或催化剂作用下,用空气或氧气氧化,生成苯甲酸;若用缓和氧化剂或温和的反应条件氧化,则生成苯乙酮。

表1.1乙苯的其它性质

序号

常数名称

计量单位

常数值

备注

1

分子量

106.16

2

液体比重

0.882

0C

3

沸点

C

136.2

101325Pa

4

熔点

C

-94.4

101325Pa

5

液体热容量

kJ/(kgK)

1.754

298.15K

6

蒸汽热容量

Kcal/(kgK)

0.285

27C

7

蒸发热

kJ/mol

35.59

正常沸点下

8

液体粘度

104kgSee/M2

0.679

20C

9

生成热

Kcal/mol

2.98

20C

10

在水中溶解度

11

燃烧热

Kcal/mol

1101.1

气体

12

闪点

C

15

13

自然点

C

553.0

14

爆炸范围

%(体积)

2.3〜7.4

122乙苯的主要用途

乙苯是一个重要的中间体,主要用来生产苯乙烯,其次用作溶剂、稀释剂以

及用于生产二乙苯、苯乙酮、乙基蒽醌等;同时它又是制药工业的主要原料

1.3苯乙烯常见生产方法

1.3・1环球化学/鲁姆斯法

以乙苯为原料,采用脱氢反应器,由开始的单级轴向反应器,中间经历开发了双级轴向反应器到双径向反应器再到双级径向反应器的各种组合优化的多种反应器;反应器的操作压力有开始的正压发展到今天的负压;汽油比有开始的2.5:

1发展到今天1.3:

1;蒸汽消耗由开始的10kg/kgSM发展到今天的4kg/kgSMUO/Lummu的ClassicSM流程中乙苯脱氢工艺装置主要有蒸汽过热炉、绝热型反应器、热回收器、气体压缩机和乙苯/苯乙烯分离塔。

过热炉将蒸汽过热至800°C而作为热引入反应器。

乙苯脱氢的工艺操作条件为550〜650^,常压或减压,蒸汽/乙苯质量比为1.0〜2.5。

粧料汽■乙苯

冷凝液

图1.1UOP/Lummus的ClassicSM工艺流程

乙華/尊乙烯分«帯

UOP/Lummu啲“SMARTSM工艺是在ClassicSM工艺基础上发展的一项新工艺,即在工艺ClassicSM工艺的脱氢反应中引入了部分氧化技术。

可提高乙苯单程转化率达80%以上。

“SMART技术的优点在于,通过提高乙苯转化率,减少了未转化乙苯的循环返回量,使装置生产能力提高,减少了分离部分的能耗和单耗;以氢氧化的热量取代中间换热,节约了能量;甲苯的生成需要氢,移除氢后减少了副反应的发生;采用氧化中间加热,由反应物流或热泵回收潜热,提高了能量效率,降低了

动力费用,因而经济性明显优于传统工艺。

该技术可用于原生产装置改造,改造容易且费用较低。

目前采用“SMART工艺SM装置有3套在运行。

粗焙塔乙輩序辈乙*葦F用華塔

 

图1.2Lummus的SMART乙苯脱氢工艺流程图

表1.1“SMART与Classic比较

反应条件和结果

Classic

“SMART工艺

苯乙烯选择性/%

95.6

95.6

乙苯转化率/%

69.8

85

水比

1.7

1.3

蒸汽/苯乙烯/t/t

2.3

1.3

燃烧油/苯乙烯/kg/t

114.0

69.0

1.3.2Fina/Badger法

Badger工艺采用绝热脱氢,蒸汽提供脱氢需要的热量并降低进料中乙苯的分压和抑制结焦。

蒸汽过热至800〜900C,与预热的乙苯混合再通过催化剂,反应温度为650C,压力为负压,蒸汽/乙苯比为1.5%〜2.2%0

1・3・3巴斯夫法

巴斯夫法工艺特点是用烟道气加热的方法提供反应热,这是与绝热反应的最

催化刑

7501C

630r

585匸

出口气体回收

#一斗祖華乙烯

大不同。

其流程如下图所示:

烟道气

图1.4巴斯夫法工艺流程示意图

1.3.4Halcon法

Haleon法又称POSM联产法。

Halcon法公司开发,于1973年在西班牙实现工业化。

反应过程中乙苯在液相反应器中用氧化成过氧化物,反应条件为压力0.35MPa,温度141C,停留时间4h,生成的乙苯过氧化物经提浓度到17%后进入环氧化工序。

环氧化温度为110C、压力为4.05MP&环氧化反应液经蒸馏得环氧丙烷。

环氧化另一产物甲基苄醇在260C、常压下脱水得苯乙烯。

反应流

程如图4所示。

1-过氧化塔;2-提液塔;3-环氧化塔;4,5-分离塔;6-环氧丙烷提浓塔;

7-甲基苄酯脱水塔;8-苯乙烯提浓塔;9-苯乙酮加氢器

图1.5Halcon法工艺流程示意图

1.3.5裂解汽油萃取分离法

日本日本东丽公司开发了Stex法裂解汽油萃取分离苯乙烯技术,同时还开发了专用萃取剂,可分离出纯度大于99.7%的苯乙烯,同时可生产对二甲苯,并降低裂解汽油加氢负荷,生产成本仅为乙苯脱氢法的一半。

1.3.6环氧丙烷联产法

环氧烷联产法是先将乙苯氧化成乙苯氢过氧化物,再使之在MoW催化剂

存在下与丙烯反应生成环氧丙烷和-■-苯乙醇,后者脱水可得到苯乙烯。

其优点是克服了AICI3法有污染、腐蚀和需要氯资源的特点;缺点是流程长、投资大,对原料质量要求较高,操作条件严格,联产品多,每吨苯乙烯联产0.45t左右的环氧丙烷,因此不适宜建中小型装置。

目前世界上拥有该技术的有阿尔科化学、壳牌和德士古化学。

第2章生产工艺说明

2.1本工艺设计说明

2.1.1生产任务

年产50万吨精苯乙烯,纯度》99.8%。

2.1.2生产方法

采用低活性、高选择性催化剂,参照鲁姆斯(Lummus公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。

鲁姆斯(Lummus)公司经典苯乙烯单体生产工艺技术具有深度减压,绝热乙苯脱氢工艺。

鲁姆斯(UO/Lummu)经典苯乙烯单体生产工艺是全世界生产苯乙烯(SM单体中最成熟和有效的技术,自1970年实现工业化以来,目前大约有55套装置在运转。

乙苯(EB)脱氢是在蒸汽存在下,利用蒸汽来使并维持催化剂处于适当的氧化状态。

蒸汽既加热反应进料、减少吸热反应的温度降,同时蒸汽也降低产品的分压使反应平衡向着苯乙烯(SM)方向进行,且又可以连续去除积炭以维持催化剂的一定活性。

高温、高压蒸汽稀释和低反应系统压力能提供良好的反应平衡曲线,对乙苯(EB)转化为苯乙烯(SM)有利,在有两个绝热反应器的工业生产装置中,乙苯(EB)的总转化率可达到70%-85%新鲜乙苯和循环乙苯先与一部分蒸汽混合,然后在一个用火加热的蒸汽过热器内进行过热,再与过热蒸汽相混合,在一个两段、绝热的径向催化反应系统内进行脱氢。

热反应产物在一个热交换器内冷却以回收热量并冷凝。

不凝气(主要是氢气)压缩后,经回收烃类后再用作蒸汽过热器的燃料,而冷凝液体分为冷凝水和脱水有机混合物(DM)。

在脱水有机混合物(DM)(苯乙烯、未反应乙苯、苯、甲苯和少量高沸物)中加入一种不含硫的阻聚剂(NSI)以减少聚合而损失苯乙烯(SM单体,然后在乙苯/苯乙烯单体(EB/SM分馏塔进行分离,塔顶轻组分(EB及轻组分(苯/甲苯)从塔顶取得)去乙苯分离塔,从而从乙苯分离出苯和甲苯,回收的乙苯返回脱氢反应器原料中。

EB/SM塔底物(苯乙烯单体和高沸物)在最后苯乙烯分馏塔内进行分馏,塔顶产品即为苯乙烯(SM单体产品,少量的塔底焦油用作蒸汽过热器的燃料,蒸汽过热器所需大部分燃料来自脱氢废气和苯乙烯焦油。

2.1.3生产控制参数及具体操作

1投料配比

水蒸气:

乙苯=3:

1(质量比)

2温度、压强和时间

脱氢温度控制在600°C左右,负压;

多塔分离控制在常温,常压。

3具体操作

在脱氢反应器600C条件下,加入定量的水蒸气、乙苯和氧气混合气体,反应完全后;通到冷凝器进行冷凝、降温;输送到气体压缩机油水分离器将有机相和无机相分离,保持恒温20C左右;和阻聚剂一起加到粗馏塔中,初步分离,塔顶为乙苯、苯和甲苯,塔底为苯乙烯、焦油;将其送至乙苯塔和苯乙烯精制塔,乙苯塔分离出乙苯和甲苯、苯,把乙苯送回脱氢反应器,还将甲苯和苯送到苯/甲苯塔分离,分离出甲苯和苯。

生产工艺流程见LummuS勺“SMART乙苯脱氢工艺流程图。

fit#乙栄翳華乙H華/甲初#

图2.1Lummus的SMART乙苯脱氢工艺流程图

2.2生产工艺的反应历程

2.2.1反应方程式

/\催化剂

C2H5愛*

500〜600C

除脱氢反应外,同时发生一系列副反应,副产物甲苯、甲烷、乙烷、焦油等;

C6H5C2H5H2>C6H5CH2CH4

C6H5C2H5H2-;。

6叫C2H6

C6H5C2H5>8C5H2

C6H5C2H516H2O>8CO221H

为了减少在催化剂上的结炭,需要在反应器进料中加入高温水蒸气,从而发

生下述反应:

CH2O>CO22H2

脱氢反应式1mol乙苯生成2mol产品(苯乙烯和氢气),因此加入蒸气也可使苯乙烯在系统中的分压降低,有利于提高乙苯的转化率。

催化剂以三氧化二铁为主,加上氧化铬、氧化铜、氧化钾等助催化剂涂于氧化铁或碳酸钾等载体上,投料比为水蒸气:

乙苯=2〜3:

1(质量比),反应所得的气体混合物经冷凝、油水分离、多塔分离和精制,制得苯乙烯。

222生产过程

1脱氢过程

在脱氢反应器中,苯乙烯的产率与水蒸气用量和反应温度有关。

水蒸气用量太少或反应温度太低,反应不完全,产率低;水蒸气用量过多或反应温度过高,催化剂结炭而降低产率。

将原料中的水蒸气(按比例过量)有助于反应向右移,也要严格控制反应温度。

2冷凝过程

在冷凝器中,将脱氢反应的产物冷凝,降低其温度。

3油水分离过程

冷凝后,因反应中的水蒸气变为水,通过气体压缩机和油水分离器,将有机相和水分离。

4多塔分离过程

油水分离的有机相进入粗馏塔,并加入阻聚剂防止苯乙烯聚合,还要进入乙苯塔、苯乙烯精馏塔、苯/甲苯塔,苯送回脱氢反应器,使其循环。

2.3原料、产品及半成品

2.3.1产品

化学名称:

苯乙烯

规格:

含量》99.8%

沸点:

145.2C

折光率:

1.5439(25C)

2.3.2原料

化学名称:

乙苯

分子量:

106.16

将依次它们分离出来,把分离出来的乙

英文名称:

styrol

分子量:

104.15

熔点:

—30.6C

结构式:

C6H5CH二CH?

结构式:

C6H5CH2CH3

沸点:

136.2C

密度:

0.8671gcm3

折光指数:

1.4959(25C)

2.3.3半成品

乙苯经脱氢反应器反应后,反应生成物送乙苯—苯乙烯塔分离成乙苯(苯和甲苯)及粗苯乙烯(带重组分及焦油)。

2.3.4催化剂

催化剂以三氧化二铁为主,加上氧化铬、氧化铜、氧化钾等助催化剂涂于氧化铁或碳酸钾等载体上,使反应更好的发生,有利于苯乙烯的生成。

2.3.5阻聚剂

在苯乙烯工艺中,需要阻聚剂的有两个地方:

一是苯乙烯精馏系统,二是苯乙烯产品贮存系统。

在精馏塔中,苯乙烯处于120C的高温,阻聚剂主要用来防

止聚合物的生成;在苯乙烯贮存系统中,温度一般为20r以下,聚合率较低,

阻聚剂的主要用途之一是防止苯乙烯氧化。

由于温度存在着很大的不同,对阻聚剂的要求也不一样,所以,在蒸馏塔中使用无硫阻聚剂(2、4-二硝基-邻-二-

丁基酚(DNBP俗称NSI),在苯乙烯贮存系统中使用4-叔丁基邻苯二酚(TBC。

2.4生产方式的选取

化工生产的操作可分为全间歇、半间歇、连续和半连续四种:

在全间歇操作中,整批物料投在一个设备单元中处理一定时间,然后整批输送到下一个工序;半间歇操作过程是间歇操作过程的连续操作过程。

全间歇与半间歇(统称间歇式操作)的优点是设备简单,改变生产品种容易;其缺点是原料消耗定额高,能量消耗大,劳动生产率低,产品质量不稳定。

连续式操作,原料及能量消耗低,劳动生产率高,因此比较经济;但总投资较大,占地面积较大,一般单线生产能力为2〜10万吨/年。

半连续操作与连续操作相比设备费用较少,操作较简单,改变生产品种较容易,但产品质量不如连续操作稳定,与间歇操作相比,生产规模更大,劳动生产率也更高,用与较大规模的品种生产,一般为1〜2万吨/年。

由于苯乙烯用量很大,需连续化大生产。

采用连续式操作比较有利。

苯乙烯生产能力根据设计任务规定为年产50万吨。

取年工作日为300天,则每

昼夜生产能力为1666・610kg。

每日生产能力同样为1666.610kg苯乙烯,这样的规模采用连续操作是比较合理的。

第3章物料衡算

3.1生产能力的计算

根据设计任务,苯乙烯的年生产能力为50万吨/年。

开工因子=生产装置开

工时间/年自然时间。

为了充分利用设备,开工因子应取的较大,接近1,但又

不能等于1。

因为还要考虑到设备的检修以及开停车等情况。

开工因子一般取为0.7〜0.8。

全年365天,则年生产250〜300天;因此除去季保养、月保养、修理、放假等总计65天,则年工作日为(365-65)天=300天。

定每天生产为1批料,每小时生产为1班。

可知每批料的生产能力为

500000X103/300)Kg/天=1666.6103kg/天。

此作为物料衡算的标准

3.2质量守恒定律

必须等于离开这个系统的全

依据质量守恒定律,对研

质量守恒定律是“进入一个系统的全部物料量,部物料量,再加上过程中损失量和在系统中累计量”究系统做物料衡算,可用下式表示:

-G进=2G出+3G损+3G积

式中ZG4105—输入物料量总和;

3G出一离开物料量总和;

-G损一总的损失量;

ZG积一系统中积累量

3.3各设备的物料衡算

3.3.1进出脱氢反应器的物料衡算

1投料量计算对连续生产可确定计算基准为Kg/批,则需计算每批产量及原料投料量。

乙苯的脱氢反应(见反应历程)

其中原料规格:

乙苯(99.6%)水蒸气(95%)

原料乙苯含甲苯0.02%、含苯0.014%,含焦油0.006%。

原料水蒸气含5%的杂质气体。

每批产苯乙烯:

G8=1666.6Kg

投料比:

水蒸气:

乙苯=3:

1(质量比)转化率:

脱氢过程为90%分离率:

多塔分离过程为98%每班理论投料乙苯量:

Gi=(1666.6/24X103x106.16)/(104.15X90%X98%X98%)=8.1884X104Kg

每班理论投水蒸气量:

G2=3X8.1884X104=24.565X104Kg

每批原料实际投入量:

G1=(8.1884X104/0.996)Kg=8.2213X104Kg

G2=(24.565X104/0.95)Kg=25.585X104Kg

杂质:

G3=(25.585-24.565)X104Kg+(8.2213-8.1884)X104Kg=1.3259X104Kg

催化剂的量:

G4=(25.585+8.2213)X104X0.3%Kg=1.3259X103Kg

2脱氢过程计算

转化率为:

90%

苯乙烯的产量G5=(8.1884X104X104.15X90%)/106.16Kg=7.23X104Kg

氢气的产量:

G6=(8.1884X104X90%X2)/106.15Kg=1.3885X103Kg

氧气的加入量:

G7=(0.5X32X1.3885X103)/2=1.1108X103Kg

乙苯剩余量:

G8=8.1884X104X(1—90%=8.1884X103Kg

生成水G9=(1.3885X103X18)/2=1.2496X104Kg

进出脱氢反应器的物料衡算见表3.1o

表3.1进出脱氢反应器的物料衡算表(Kg/批)

输入

输出

序号

物料名称

质量Kg

序号

物料名称

质量Kg

1

乙苯(99.6%)

82213

1

乙苯(100%

8188.4

2

水蒸汽(95%

258580

2

水蒸汽

258580

3

氧气

11108

3

水蒸汽

12496

4

催化剂

1022.4

4

苯乙烯

72300

5

甲苯

169.1

6

112

7

焦油

55

8

催化剂

1022.4

总计

352923

总计

352923

3・3・2冷凝油水分离阶段的物料衡算

脱氢结束后用冷凝器加以冷凝,除去水,温度必须控制在20C左右

表3.2进出冷凝油水分离器的物料衡算表(Kg/批)

输入输出

序号

物料名称

质量Kg

序号

物料名称

质量Kg

1

乙苯

8188.4

1

乙苯

8188.4

2

苯乙烯

72300

2

苯乙烯

72300

3

甲苯

169.1

有机层

3

甲苯

169.1

4

112

4

112

5

焦油

55

5

焦油

55

6

水蒸汽

271076

无机层

6

271076

7

催化剂

1022.4

7

催化剂

1022.4

总计

352923

总计

352923

3・3・3粗馏塔的物料衡算

将有机相加入粗馏塔中进行分离,同时加入阻聚剂防止苯乙烯聚合。

加入阻

聚剂的量为:

(8188.4+72300+169.1+112+55)X0.3%=242.45Kg

表3.3粗馏塔的物料衡算表(Kg/批)

输入

输出

序号

物料名称

质量Kg

物料名称

质量Kg

1

乙苯

8188.4塔顶

乙苯

8188.4

2

苯乙烯

72300

甲苯

169.1

3

甲苯

169.1

112

4

112

苯乙烯

72300

5

焦油

55

塔底

焦油

55

6

阻聚剂

242.45

阻聚剂

242.45

总计

81066.95

总计

81066.95

3・3・4乙苯塔的物料衡算表

将粗馏塔塔顶的物料加入到乙苯塔中,进行分离

表3.4乙苯塔的物料衡算表

输入

输出

序号

物料名称

质量Kg

序号

物料名称

质量Kg

1

乙苯

8188.4

甲苯

169.1

2

甲苯

169.1

塔顶

112

3

112

4

塔底

乙苯

1637.68

总计

8469.5

总计

8469.5

3・3・5苯乙烯精馏塔的物料衡算

将粗馏塔塔底的物料加到苯乙烯的精馏塔中进行分离,进一步浓缩苯乙烯的

浓度。

表3.5苯乙烯精馏塔的物料衡算表

输入

输出

序号

物料名称

质量Kg

序号

物料名称

质量Kg

1

苯乙烯

72300

2

焦油

55

塔顶

苯乙烯

72300

3

阻聚剂

242.45

焦油

55

塔底

阻聚剂

242.45

总计

72597.45

总计

72597.45

3・3・6苯/甲苯的物料衡算

将乙苯塔塔顶的物料送到苯/甲苯塔中,进行分离。

表3.6苯/甲苯塔的物料衡算表

输入输出

序号物料名称质量Kg序号物料名称质量Kg

1苯112塔顶苯112

甲苯

169.1塔底

281.1总计

甲苯

169.1

281.1

3.4物料流程图

根据以上物料衡算,物料流程见图3.7(kg/h)

乙苯

82213

水蒸汽

258580

氧气

11108

催化剂

1022.4

乙苯

8188.4

苯乙烯

72300

甲苯

169.1

112

焦油

55

阻聚剂

242.45

乙苯塔

脱氢反应

冷凝分离

粗馏塔

*r

苯/甲苯

乙苯

8188.4

苯乙烯

72300

甲苯

169.1

112

焦油

55

水蒸汽

271076

催化剂

1022.4

甲苯

169.1

112

苯乙烯精馏塔

苯乙烯

69436.9

焦油

55

图3.7物料流程图

第4章热量衡算

4.1能量守恒定律

热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 材料科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1