六年级奥数专题 染色问题.docx
《六年级奥数专题 染色问题.docx》由会员分享,可在线阅读,更多相关《六年级奥数专题 染色问题.docx(18页珍藏版)》请在冰豆网上搜索。
六年级奥数专题染色问题
二十染色问题
(1)
年级班姓名得分
(编者按:
由于内容本身的限制,本讲不设填空题)
1.某影院有31排,每排29个座位.某天放映了两场电影,每个座位上都坐了一个观众.如果要求每个观众在看第二场电影时必须跟他(前、后、左、右)相邻的某一观众交换座位,这样能办到吗?
为什么?
2.如图是一所房子的示意图,图中数字表示房间号码,每间房子都与隔壁的房间相通.问能否从1号房间开始,不重复的走遍所有房间又回到1号房间?
1
2
3
4
5
6
7
8
9
3.在一个正方形的果园里,种有63棵果树、加上右下角的一间小屋,整齐地排列成八行八列(见图(a)).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?
如果有80棵果树,连小屋在内排成九行九列(图(b))呢?
(a)(b)
4.一个8⨯8国际象棋(下图)去掉对角上两格后,是否可以用31个2⨯1的“骨牌”(形如)把象棋盘上的62个小格完全盖住?
5.如果在中国象棋盘上放了多于45只马,求证:
至少有两只马可以“互吃”.
6.空间6个点,任三点不共线,对以它们为顶点的线段随意涂以红色或蓝色,是否必有两个同色三角形?
7.如图,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任一个中去.如果要求甲虫能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?
8.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:
一只马从起点出发,跳了n步又回到起点.证明:
n一定是偶数.
9.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:
一只马能否跳遍这半张棋盘,每一点都不重复,最后一步跳回起点?
10.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:
证明:
一只马不可能从位置B出发,跳遍半张棋盘而每个点都只经过一次(不要求最后一步跳回起点).
11.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:
一只马能否从位置B出发,用6步跳到位置A?
为什么?
12.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:
一只车从位置A出发,在这半张棋盘上走,每步走一格,走了若干步后到了位置B.证明:
至少有一个格点没被走过或被走了不止一次.
13.8⨯8的国际象棋棋盘能不能被剪成7个2⨯2的正方形和9个4⨯1的长方形?
如果可以,请给出一种剪法;如果不行,请说明理由.
14.(表1)是由数字0,1交替构成的,(表2)是由(表1)中任选、、
三种形式组成的图形,并在每个小方格全部加1或减1,如此反复多次进行形成的,试问(表2)中的A格上的数字是多少?
并说明理由.
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
表1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
表2
———————————————答案——————————————————————
1.把影院的座位图画成黑白相间的矩形.(29⨯31),共有899个小方格.不妨假定四角为黑格,则共有黑格450个,白格449个.
要求看第二场电影,每位观众必须跟他相邻的某一观众交换位置,即要求每一黑白格必须互换,因黑白格的总数不相等,因此是不可能的.
2.将编号为奇数的房间染成黑色,编号为偶数的房间染成白色.从1号房间出发,只能按黑白黑白……的次序,当走遍九个房间时应在黑色房间中,这个房间不与1号房间相邻,故不能不重复地走遍所有房间又回到1号房间.
3.图(a)行,走法如图所示.
图(a)
图(b)不行,将小屋染成黑色,果树染成黑白相间的颜色,则图(b)中有41个黑色的,40个白色的.从小屋出发,按黑白黑白……的次序,当走遍80棵树后,到达的树的颜色还是黑色,与小屋不相邻,故不可能最后回到小屋.
4.不能.原因是每一个2⨯1的矩形骨牌一定恰好盖住一个黑格和一个白格,31个这样的骨牌恰好盖住31个黑格和31个白格.
但是国际象棋棋盘上对角两格的颜色是相同的,把它们去掉后剩下的是30个白格,32个黑格,或32个白格,30个黑格,因此不能盖住.
5.中国象棋棋盘上有90个交叉点,把棋盘分成10个小部分,每部分有3⨯3=9个交叉点,由抽屉原则知,至少有一个小部分内含有6只马.
将这一小部分的9个交叉点分别涂上黑色及白色.总有两只马在不同颜色交叉点上,故一定有两只马“互吃”.
6.设这六个点为A、B、C、D、E、F.我们先证明存在一个同色的三角形:
考虑由A点引出的五条线段AB、AC、AD、AE、AF,其中必有三条被染成了相同的颜色,不妨设AB、AC、AD三条同为红色.再考虑三角形BCD的三边:
若其中有一条为红色,则存在一个红色三角形;若这三条都不是红色,则三角形BCD为蓝色三角形.
下面再来证明有两个同色三角形,不妨设三角形ABC的三边同为红色.
(1)若三角形DEF也是红色三角形,则存在两个同色三角形.
(2)若三角形DEF中有一条边为蓝色(不妨设DE),下面考虑DA、DB、DC三
条线段,其中必有两条同色.
①若其中有两条是红色的,如DA、DB是红色的,则三角形DAB为第二个同色三角形(图1).
②若其中有两条是蓝色的,设DA、DB为蓝色(图2).此时在EA、EB两条线段中,若有一条为蓝色,则存在一个蓝色三角形;若两条都是红色的,则三角形EAB为红色三角形.
综上所述,一定有两个同色三角形.
7.甲虫不能走遍所有的立方体.
我们将大正方体如图分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然在27个小正文体中,14个是黑的,13个是白的.甲虫从中间的白色正方体出发,每走一步,小正方体就改变一种颜色.故它走27步,应该经过14个白色的小正方体,13个黑色的小正方体.因此在27步中至少有一个白色的小正方体,甲虫进去过两次.故若要求甲虫到每个小正方体只去一次,甲虫就不能走遍所有的小正方体.
8.将棋盘上的各点按黑白相间的方式染上黑白二色.
由“马步”的行走规则,当“马”从黑点出发,下一步只能跳到白点,以后依次是黑、白、黑、白……要回到原出发点(黑点),它必须跳偶数步.
9.不能.半张象棋盘共有45个格点,马从起点出发跳遍半张棋盘,则起点与最后一步同色.故不可能从最后一步跳回起点.
10.与B点同色的点(白点)有22个,异色的点(黑色)有23个.马从B点出发,跳了42步时,已经跳遍了所有的白色,还剩下两个黑点,但是马不能够连续跳过两个黑点.
11.不能.因为A、B两点异色,从B到A所跳的步数是一个奇数.
12.“车”每走一步,所在的格点就会改变一次颜色.因A、B两点异色,故从A到B“车”走的步数是一个奇数.但半张棋盘共有45个格点,不重复地走遍半张棋盘要44步,但44是一个偶数.
13.如图对8⨯8的棋盘染色,则每一个4⨯1的长方形能盖住2白2黑小方格,而每一个2⨯2的正方形能盖住1白3黑或1黑3白小方格,那么7个2⨯2的正方形盖住的黑色小方格数总是一个奇数,但图中黑格数为32是一个偶数.故这种剪法是不存在的.
14.如下图所示,将表
(1)黑白相间地染色.
表
(1)
本题条件允许如图所示的6个操作,这6个操作无论实行在那个位置上,白格中的数字之和减去黑格中的数字之和总是一个常数,所以表1中白格中数字之和与黑格中数字之和的差即32,等于表2中白格中数字之和与黑格中数字之和的差即(31+A)-32,于是(31+A)-32=32,故A=33.
二十染色问题
(2)
年级班姓名得分
1.下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何
一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
2.展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口
进去,不重复地参观完全部展室后,从出口出来呢?
3.图中的16个点表示16个城市,两个点之间的连线表示这两个城市有公路
相通.问能否找到一条不重复地走遍这16座城市的路线?
4.下图是由4个小方格组成的“L”形硬纸片,用若干个这种纸片无重叠地
拼成一个4⨯n的长方形,试证明:
n一定是偶数.
5.中国象棋盘上最多能放几只马互不相“吃”(“马”走“日”字,另不考虑“别马腿”的情况).
6.能否用一个田字和15个4⨯1矩形覆盖8⨯8棋盘?
7.能否用1个田字和15个T字纸片,拼成一个8⨯8的正方形棋盘?
8.在8⨯8棋盘上,马能否从左下角的方格出发,不重地走遍棋盘,最后回到起点?
若能请找出一条路,若不能,请说明理由.
9.下面三个图形都是从4⨯4的正方形分别剪去两个1⨯1的小方格得到的,问可否把它们分别剪成1⨯2的七个小矩形?
(1)
(2)
(3)
10.把三行七列的21个小格组成的矩形染色,每个小格染上红、蓝两种色中的一种.求证:
总可以找到4个同色小方格,处于某个矩形的4个角上(如图)
1
2
3
红
红
红
红
11.17个科学家互相通信,在他们的通信中共讨论3个问题,而任意两个科学家之间仅讨论1个问题.证明:
至少有3个科学家,他们彼此通信讨论的是同一个问题.
12.用一批1⨯2⨯4的长方体木块,能不能把一个容积为6⨯6⨯6的正方体木箱充塞填满?
说明理由.
13.在平面上有一个27⨯27的方格棋盘,在棋盘的正中间摆好81枚棋子,它们被罢成一个9⨯9的正方形.按下面的规则进行游戏:
每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这格棋子取出来.问:
是否存在一种走法,使棋盘上最后恰好剩下一枚棋子?
14.12⨯12的超极棋盘上,一匹超级马每步跳至3⨯4矩形的另一角(如图).问能否从任一点出发遍历每一格恰一次,再回到出发点(这种情况又称马有“回路”)?
O
O
———————————————答案——————————————————————
1.不能.对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,则图中有7个黑色房间和5个白色房间.如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
2.不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同.
3.不能.对这16个城市进行黑白相间的染色,一种颜色有9个,另一种颜色有7个.而要不重复地走遍这16个城市,黑色与白色的个数应该相等.
4.如图,对4⨯n长方形的各列分别染上黑色和白色.任一L形纸片所占的方格只有两类:
第一类占3黑1白,第二类占3白1黑.
设第一类有a个,第二类有b个,因为涂有两种颜色的方格数相等,故有3b+a=3a+b,即a=b,也就是说第一类与第二类相等,因此各种颜色的方格数都是4的倍数,总数是8的倍数,从而n是偶然.
5.将棋盘黑白相间染色,由“马”的走法可知,放在黑点上的“马”,只能吃放在某些白点上的马.整个棋盘上黑、白点的个数均为45,故可在45个黑点放上马,它们是不能互吃的.
6.如图的方式对棋盘染色.那么一个田字形盖住1个或3个白格,而一个4⨯1的矩形盖住2个白格.这样一来一个田字和15个4⨯1的矩形能盖住的白格数是一个奇数,但上图中的白格数是一个偶数,因此一个田字形和15个4⨯1的矩形不能复盖8⨯8的棋盘.
7.将棋盘里黑白相间涂色.一个田字形盖住2个白格,一个T字形盖住3个或1个白格.故1个田字和15个T字盖住的白格数是一个奇数,但棋盘上的白格数是一个偶数.因此一个田字形和15个T字形不能盖住8⨯8的棋盘.
8.将棋盘黑白相间地染色后,马的走法是从一种颜色的格子跳到另一种颜色.棋盘上有32个白格与32个黑格,故马可能跳遍整个棋盘.图中给出了一种走法.
56
41
58
35
50
39
60
33
47
44
55
40
59
34
51
38
42
57
46
49
36
53
32
61
45
48
43
54
31
62
37
52
20
5
30
63
22
11
16
13
29
64
21
4
17
14
25
10
6
19
2
27
8
23
12
15
1
28
7
18
3
26
9
24
9.先对4⨯4的棋盘黑白相间的涂色(如图),这道题的实际问题是问7个1⨯2矩形能否分别复盖剪去A、B;剪去A、C;剪去A、D的三个棋盘.若7个1⨯2矩形可以复盖剪残的棋盘,因为每个1⨯2矩形均可盖住一个白格和一个黑格,所以棋盘的白格与黑格数目应该相等.都是7个.而剪去A格和C格的棋盘
(2)有5个白格8个黑格,剪去A、D的棋盘(3)有5个白格8个黑格,因此这两个剪损的棋盘均不能被7个1⨯2矩形复盖,也就不能剪成7个1⨯2的矩形.
A
B
C
D
棋盘
(1)可以被7个1⨯2的矩形所复盖.下面给出一种剪法:
A
1
1
2
7
7
B
2
6
5
4
3
6
5
4
3
10.在第一行的7格中必有4格同色,不妨设这4格位于前4个位置,且均为红色.
然后考虑前4列构成的3⨯4矩形.若第二行和第3行中出现2个或2个以上的红色格子.则该行的两个红色格子与第一行的红色格子就组成一个4角同为红色格子的矩形.
若不然,则第2、3行中都至少有3个蓝格在前4列中,不妨设第2行前3格为蓝色,显然第三行中的前3格中至少有2个蓝格,故在二、三行的前4列中必存在四角都是蓝色的矩形.
11.将17个科学家用17个点代表,两点之间连结的线段表示两个科学家之间讨论的问题.用三种颜色给这些线段染色,表示三个问题,于是问题就变成:
给17个点之间的所有连结线段用三种颜色染色,必有同色三角形.
从任意一点,不妨设从A向其他16点A1,A2,…A16共可连成16条线段,用三种颜色染色,由抽屉原则可知,必有6条线段同色.设这6条线段为AA1,AA2,…AA6且同为红色.
考虑A1,A2,A3,A4,A5,A6这六点之间的连线,若有一条为红色,(如A1A2为红色),则三角形AA1A2为红色的同色三角形.
若这六点之间的连线中,没有一条是红色的,则它们之间只能涂两种颜色.考虑从A1引出的五条线段A1A2A1A3A1A4A1A5A1A6,由抽屉原理知,其中必有三条是同色的.不妨设这三条为A1A2A1A3A1A4,且同为蓝色.若三角形A2A3A4的三边中有一条为蓝色的,则有一个蓝色的三角形存在;若三角形A2A3A4三边都不是蓝色的,则它的三边是同为第三色的同色三角形.
12.把正方体木箱分成27个小正方体,每个小正方体的体积为2⨯2⨯2=8.将这些正方体如右图黑白相间染上色.显然黑色2⨯2⨯2的正方体有14个,白色2⨯2⨯2小正方体有13个.每一个这样的正方体相当于8个1⨯1⨯1的小正方体.
将1⨯2⨯4的长方体放入木箱,无论怎么放,每个长方体木块盖住8个边长为1的单位正方体,其中有4个黑色的,4个白色的.木箱共含6⨯6⨯6=216个单位正方体,26个长方体木块共盖住8⨯26=208个单位正方体,其中黑白各占104个,余下216-208=8个单位正方体是黑色的.但是第27个1⨯2⨯4长方体木块不管怎样放,也无法盖住这8个黑色单位正方体.
13.如图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘分成了三个部分.按照游戏规则,每走一步,有两种颜色方格中的棋子数分别减少了1个,而第三种颜色的棋子数增加了一个.这表明每走一步,每个部分的棋子的奇偶性要发生改变.
因为一开始时,81枚棋子摆成一个9⨯9的正方形,显然三个部分的棋子数是相同的,从而每走一步,三部分中的棋子数的奇偶性是相同的.如果走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分上的棋子数为奇数.这种结果是不可能出现的.
14.用两种方法对超级棋盘染色.
首先,将棋盘黑白相间染色,则马每跳一步,它所在的方格就要改变一次颜色.不妨设第奇数步跳入白格.
其次,将棋盘的第3,4,5及8,9,10这六行染成黑色,其余六行染成白色.在此种染色方式下,马从白格一定跳入黑格.又因黑白格总数相同,马要遍历每一格恰一次又回到出发点,因此,马从黑格只能跳入白格而不能跳入黑格.不妨设马第奇数步跳入白格.
但是对于一种满足要求跳法,在两种染色方式下第奇数步跳入的格子的全体是不同的,这显然是不可能的,故题目要求的跳法是不存在的.