公务员数学运算之十八.docx

上传人:b****8 文档编号:9105456 上传时间:2023-02-03 格式:DOCX 页数:18 大小:124.53KB
下载 相关 举报
公务员数学运算之十八.docx_第1页
第1页 / 共18页
公务员数学运算之十八.docx_第2页
第2页 / 共18页
公务员数学运算之十八.docx_第3页
第3页 / 共18页
公务员数学运算之十八.docx_第4页
第4页 / 共18页
公务员数学运算之十八.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

公务员数学运算之十八.docx

《公务员数学运算之十八.docx》由会员分享,可在线阅读,更多相关《公务员数学运算之十八.docx(18页珍藏版)》请在冰豆网上搜索。

公务员数学运算之十八.docx

公务员数学运算之十八

数学运算之统筹问题专题

统筹问题在日常生活中会经常遇到,是一个研究怎样节省时间、提高效率的问题。

随着公务员考试数学运算试题越来越接近生活,注重实际,这类题目出现的几率也越来越大。

例1、某服装厂有甲、乙、丙、丁四个生产组,甲组每天能缝制8件上衣或10条裤子;乙组每天能缝制9件上衣或12条裤子;丙组每天能缝制7件上衣或11条裤子;丁组每天能缝制6件上衣或7条裤子。

现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子),则7天内这四个组最多可以缝制衣服()【国家2006二类-42】

  【解析】我们根据题意可得出如下一表

每天生产上衣每天生产裤子上衣:

裤子

甲8100.8

乙9120.75

丙7110.636

丁670.857

综合情况30400.75

由上表我们发现,只有乙组的上衣和裤子比例与整体的上衣和裤子比例最接近(本题相等),这说明其它组都有偏科情况,若用其它组去生产其不擅长的品种,则会造成生产能力的浪费,为了达到最大的生产能力,则应该让各组去生产自己最擅长的品种,然后让乙组去弥补由此而造成的偏差(左右救火),因为乙组无论是生产衣服还是裤子,对整体来讲,效果相同,所以应该让乙组去充当最后的救火队员角色。

  上面甲、乙、丙、丁四组数据中,上衣与裤子的比值中甲和丁最大,为了缩小总的上衣与裤子的差值,又能生产出最多的裤子,甲和丁7天全部要生产上衣,丙中上衣和裤子的比值最小,所以让丙7天都做裤子,以达到裤子量的最大化,这样7天后,甲、丙、丁共完成上衣98件,裤子77件。

下面乙组如何分配就成了本题关键。

由上面分析可知,7天后,甲、丙、丁生产的上衣比裤子多21条,所以乙要多生产21条裤子,并使总和最大化。

可设乙用x天生产上衣,则9x+21=12(7-x),解得x=3,即乙用3天生产上衣27件,用4天生产裤子48件。

于是最多生产125套。

组别生产衣服生产裤子

甲7天(7*8=56)0天(0*10=0)

丙0天(7*0=0)7天(11*7=77)

丁7天(7*6=42)0天(0*7=0)

总和98件77件

乙组3天(3*9=27)4天(4*12=48)

总和98+27=12577+48=125

  所以答案应该是125套服装。

  这种统筹问题总的思路是:

先计算整体的平均比值,选出与平均比值最接近的组项放在一边,留作最后的弥补或者追平工具,然后将高于平均值的组项赋予高能力方向发挥到极限,将低于平均值的组项赋予低能力方向发挥到极限,得出总和,然后用先前挑出的组项去追平或者弥补,就可以得极限答案。

之所以这样安排,是因为最接近中值的组项,去除后对平均值的影响最小(本题恰好相等),则意味着它的去除不影响整体平均能力,但是用它去追平其余各组的能力差异时,最容易达到平衡。

例2、甲乙两个服装厂每个工人和设备都能全力生产同一种规格的西服。

甲厂每月用5/3的时间生产上衣,5/2的时间生产裤子,全月恰好生产900套西服;乙厂每月用7/4的时间生产上衣,7/3的时间生产裤子,全月恰好生产1200套西服。

现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?

  A.30 B.40 C.50 D.60

  答案D。

【解析】:

两厂联合生产,尽量发挥各自特长。

因乙厂生产上衣的效率高,所以安排乙厂全力生产上衣。

由于乙厂用月生产1200件上衣,那么乙厂全月可生产上衣:

1200÷=2100件。

同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子:

900÷=2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服;900×=60套,故现在比原来每月多生产2100+60-(900+1200)=60套。

   

例3、某制衣厂两个制衣小组生产同一规格的上衣和裤子,甲组每月18天时间生产上衣,12天时间生产裤子,每月生产600套上衣和裤子;乙组每月用15天时间生产上衣,15天时间生产裤子,每月生产600套上衣和裤子。

如果两组合并,每月最多可以生产多少套上衣和裤子?

   A.1320B.1280C.1360D.1300

   

答案A。

解析:

由题意知:

甲生产裤子速度快,乙生产上衣比较快,那么就先发挥所长,即乙用一个月可生产上衣1200套,而甲生产1200套裤子只需24天,剩下6天甲单独生产,可生产120套,故,最多可生产1200+120=1320套。

例4、人工生产某种装饰用珠链,每条珠链需要珠子25颗,丝线3条,搭扣1对,以及10分钟的单个人工劳动。

现有珠子4880颗,丝线586条,搭扣200对,4个工人。

则8小时最多可以生产珠链( )。

【国家2006一类-38】

a.200条  b.195条  c.193条  d.192条

  【解析】4880颗珠子最多可以生产珠链195条(剩余5颗珠子),586条丝线最多可以生产珠链195条(剩余一条丝线),搭扣200对最多可以生产珠链200条,8小时共有48个10分钟,则4个工人最多可以生产珠链4*48=192条。

取195、200、192的最小值,故答案为d。

 

例5、毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。

毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?

  A.16 B.17 C.18 D.19

【答案】A。

【解析】:

因为是允许两头牛同时过河的(骑一头,赶一头),所以若要时间最短,则一定要让耗时最长的两头牛同时过河;把牛赶道对面后要尽量骑耗时最短的牛返回。

我们可以这样安排:

先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,故最少要用5+8+3=16分钟。

简单公式:

(最快+最慢)+3*第二快的

  

例6、甲地有89吨货物运到乙地,大卡车的载重量是7吨,小卡车的载重量是4吨,大卡车运一趟耗油14升,小卡车运一趟货物耗油9升,运完这些货物最少耗油多少升?

   A.181 B.186C.194D.198

   

答案A。

解析:

大卡车每吨货物要耗油14÷7=2升,小卡车每吨货物要耗油9÷4=2.25升,则应尽量用大卡车运货,故可安排大卡车运11趟,小卡车运3趟,可正好运完89吨货物,耗油11×14+3×9=181升。

 例7、全公司104人到公园划船,大船每只载12人,小船每只载5人,大、小船每人票价相等,但无论坐满与否都要按照满载计算,若要使每个人都能乘船,又使费用最省,所租大船最少为多少只?

   A.8B.7C.3D.2

   

答案D。

解析:

要使费用最省,应让每只船都坐满人,则大船最少为2只小船16只时,每只船都满载,故大船最少为2只。

例8、一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只要在装卸任务较多的工厂再安排一些装卸工就能完装卸任务,那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸要求?

   A.26B.27C.28D.29

   

答案:

A。

解析:

每车跟6个装卸工,在第一家,第二家,第四家工厂分别安排1,3,4个人是最佳方案。

事实上,有M辆汽车担负N家工厂的运输任务,当M小于N时,只需把装卸工最多的M家工厂的人数加起来即可,具体此题中即10+9+7=26。

而当M大于或等于N时需要把各个工厂的人数相加即可。

例9、把7个3×4的长方形不重叠的拼成一个长方形。

那么,这个大长方形的周长的最小值是多少?

   A.34B.38C.40D.50

  答案B。

解析:

操作题,可将4个长方形竖放,3个横放,可得一个大长方形,长为12,宽为7,故周长为(12+7)×2=38。

   注:

当面积一定时,长,宽越接近,周长则越小。

附:

公务员行测必备数学公式总结(全)

1.1基础数列类型

①常数数列如7,7,7,7,7,7,7,7,……

②等差数列如11,14,17,20,23,26,……

③等比数列如16,24,36,54,81,……

④周期数列如2,5,3,2,5,3,2,5,3,……

⑤对称数列如2,5,3,0,3,5,2,……

⑥质数数列如2,3,5,7,11,13,17

⑦合数数列如4,6,8,9,10,12,14

注意:

1既不是质数也不是合数

1.2200以内质数表

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199

1.3整除判定

能被2整除的数,其末尾数字是2的倍数(即偶数)

能被3整除的数,各位数字之和是3的倍数

能被5整除的数,其末尾数字是5的倍数(即5、0)

能被4整除的数,其末两位数字是4的倍数

能被8整除的数,期末三位数字是8的倍数

能被9整除的数,各位数字之和是9的倍数

能被25整除的数,其末两位数字是25的倍数

能被125整除的数,其末三位数字125的倍数

1.4经典分解

91=7×13111=3×37119=7×17

133=7×19117=9×13143=11×13

147=7×21153=9×17161=7×23

171=9×19187=11×17209=19×11

1.5常用平方数

数字

平方

1

1

2

4

3

9

4

16

5

25

6

36

7

49

8

64

9

81

10

100

11

121

12

144

13

169

14

196

15

225

16

256

17

289

18

324

19

361

20

400

21

441

22

484

23

529

24

576

25

625

26

676

27

729

28

784

29

841

30

900

1.6常用立方数

数字

立方

1

1

2

8

3

27

4

64

5

125

6

216

7

343

8

512

9

729

10

1000

1.7典型幂次数

底数

指数

2

3

4

5

6

1

2

3

4

5

6

2

4

9

16

25

36

3

8

27

64

125

216

4

16

81

256

625

1296

5

32

243

1024

6

64

729

7

128

8

256

9

512

10

1024

1.8常用阶乘数

数字

阶乘

1

1

2

2

3

6

4

24

5

120

6

720

7

5040

8

40320

9

362880

10

36288000

2.1浓度问题

1.混合后溶液的浓度,应介于混合前的两种溶液浓度之间。

2.浓度=溶质÷溶液

2.2代入排除法

1奇数+奇数=偶数

奇数-奇数=偶数

偶数+偶数=偶数

偶数-偶数=偶数

奇数+偶数=奇数

奇数-偶数=奇数

2.

①任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。

②任意两个数的和或差是奇数,则两数奇偶相反;和或差事偶数,则两数奇偶相同。

3.余数特性

①一个数被2除得的余数,就是其末一位数字被2除得的余数

②一个数被5除得的余数,就是其末一位数字被5除得的余数

③一个数被4除得的余数,就是其末两位数字被4除得的余数

④一个数被8除得的余数,就是其末三位数字被8除得的余数

⑤一个数被25除得的余数,就是其末两位数字被25除得的余数

⑥一个数被125除得的余数,就是其末三位数字被125除得的余数

⑦一个数被3除得的余数,就是其各位数字相加后被3除得的余数

⑧一个数被9除得的余数,就是其个位数字相加后被9除得的余数

9.循环数

198198198=198×1001001

2134213421342134=2134×1000100010001

规律:

有多少个循环数,就有多少个1,1之间0的个数是循环数位数减1

例如2134213421342134,中有“2134”四个,所以应该有4个1,同时2134为四位数,所以两个1之间应该有三个0,所以为1000100010001

10.乘方尾数口诀

底数留个位,指数除以4留余数(余数为0,则看做4)

例如19991998的末尾数字为:

底数留个位,所以底数为9;指数除以4留余数,1998除以4的余数为2,所以最后为92=81,因此末尾数字为1

11.韦达定理

其中x1和x2是这个方程的两个根,则:

x1+x2=

x1×x2=

逆推理:

如果a+b=ma×b=n

则a、b是

的两个根。

5.4行程问题

1.路程=速度×时间

2.相向运动:

速度取和;同向运动:

速度取差

3促进运动:

速度取和;阻碍运动,速度取差

5.5工程问题

工作总量=工作效率×工作时间

5.6几何问题

1.常用周长公式:

正方形周长

长方形周长

圆形周长

2.常用面积公式

正方形面积

长方形面积

圆形面积

三角形面积

平行四边形面积

梯形面积

扇形面积

3.常用表面积公式

正方体表面积

长方体表面积

球表面积

圆柱体表面积

4.常用体积公式

正方体体积

长方体体积

球的体积

圆柱体体积

圆锥体体积

5.几何图形放缩性质

若将一个图形扩大至原来的N倍,则:

对应角度仍为原来的1倍;对应长度变为原来的N倍;面积变为原来的N2倍;体积变为原来的N3倍。

6.几何最值理论

1.平面图形中,若周长一定,越接近于圆,面积越大。

2.平面图形中,若面积一定,越接近于圆,周长越小。

3.立体图形中,若表面积一定,越接近于球体,体积越大。

4.立体图形中,若体积一定,越接近于球体,表面积越小。

7.三角形三边关系

三角形两边之和大于第三边,两边之差小于第三边。

题目中例8非常重要。

5.7容斥原理

1.两集合标准型核心公式

满足条件Ⅰ的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数

2.三集合标准核心公式

3.三集合整体重复型核心公式

假设满足三个条件的元素数量分别为A、B、C,而至少满足三个条件之一的总量为W。

其中:

满足一个条件的元素数量为x,满足两个条件的数量为y,满足三个条件的数量为z,从而有下面两个等式:

W=x+y+z

A+B+C=x×1+y×2+z×3

5.8排列组合问题

1.排列公式:

2.组合公式:

3.“捆绑插空法”核心提示

相邻问题——捆绑法:

先将相邻元素全排列,然后视其为一个整体与剩余元素全排列;

不邻问题——插空法:

现将剩余元素全排列,然后将不邻元素有序插入所成间隙中。

4.对抗赛比赛场次基本公式

淘汰赛——①仅需决出冠亚军比赛场次=N-1

②需决出1、2、3、4比赛场次=N

循环赛——①单循环(任意两个队打一场比赛)比赛场次=

②双循环赛(任意两个队打两场比赛)比赛场次=

5.9概率问题

1.单独概率=满足条件的情况数÷总的情况数

2.某条件成立概率=1-该条件不成立的概率

3.总体概率=满足条件的各种情况概率之和

4.分布概率=满足条件的每个步骤概率之积

5.条件概率:

“A成立”时“B成立的概率”=A、B同时成立的概率÷A成立的概率

5.10边端问题

1.段数公式:

段数=总长÷株距

2.线性植树:

单边植树:

棵树=段数+1

双边植树:

棵树=(段数+1)×2

3.楼间植树:

单边植树棵树=段数-1

双边植树棵树=(段数-1)×2

4.环形植树:

单边植树棵树=段数

双边植树棵树=段数×2

5.方阵问题核心法则:

人数公式:

N层实心方阵的人数=N2

外周公式:

N层方阵最外层人数=(N-1)*4

对于三角阵、五边阵的情况可以此类推

6.过河问题核心法则:

①M个人过河,船上能载N个人,由于需要一个人划船,共需往返

次(需要×2)

②“过一次河”指的是单程,“往返一次”指的是双程

③载人过河的时候,最后一次不再需要返回。

5.12初等数学问题

1.同余问题

余同取余,和同加和,差同减差,公倍数作周期

例如:

①一个数除以4余1,除以5余1,除以6余1,则取1,表示为60n+1

②一个数除以4余3,除以5与2,除以6余1,则取7,表示为60n+7

③一个数除以4余1,除以5余2,除以6余3,则取3,表示为60n-3

2.等差数列核心公式

求和公式:

项数公式:

级差公式:

通项公式:

5.13年龄问题

1.基本知识点

①每过N年,每个人都长N岁

②两个人的年龄差在任何时候都是固定不变的

③两个人的年龄之间的倍数随着时间的推移而变小。

2.平均分段法

例如:

甲对乙说:

当我岁数是你现在岁数时,你才4岁。

乙对甲说:

当我的岁数是你现在岁数的时候,你是67岁,则现在甲乙各多少岁?

画出如下图:

67-------------------甲-------乙----------------------4

67-4=63,即相差了63

67-甲-乙-4,共有三段,所以每段为63÷3=21

所以乙=4+21=25岁

所以甲=25+21=46岁

5.14统筹问题

1.“非闭合”货物集中问题

判断每条“路”的两侧的货物总重量,在在这条路上一定是从轻的一侧流向重的一侧。

特别提示:

①本法则必须适用于“非闭合”的路径问题中

②本法则的应用,与各条路径的长短没有关系

③我们应该从中间开始分析,这样可以更快。

2.货物装卸为题

如果有M辆车和(N>M)个工厂,所需装卸工的总数就是需要装卸工人数最多的M各工厂所需的装卸工之和。

(若M>=N,则需要把各个点上的人加起来即答案)

排列数公式:

P

=n(n-1)(n-2)…(n-m+1),(m≤n)

组合数公式:

C

=P

÷P

=(规定

=1)。

“装错信封”问题:

D1=0,D2=1,D3=2,D4=9,D5=44,D6=265,

年龄问题:

关键是年龄差不变;

几年后年龄=大小年龄差÷倍数差-小年龄

几年前年龄=小年龄-大小年龄差÷倍数差

日期问题:

闰年是366天,平年是365天,其中:

1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。

植树问题

(1)线形植树:

棵数=总长

间隔+1

(2)环形植树:

棵数=总长

间隔

(3)楼间植树:

棵数=总长

间隔-1

(4)剪绳问题:

对折N次,从中剪M刀,则被剪成了(2N×M+1)段

鸡兔同笼问题:

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

(一般将“每”量视为“脚数”)

得失问题(鸡兔同笼问题的推广):

不合格品数=(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)

=总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)

例:

“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?

解:

(4×1000-3525)÷(4+15)=475÷19=25(个)

盈亏问题:

(1)一次盈,一次亏:

(盈+亏)÷(两次每人分配数的差)=人数

(2)两次都有盈:

(大盈-小盈)÷(两次每人分配数的差)=人数

(3)两次都是亏:

(大亏-小亏)÷(两次每人分配数的差)=人数

(4)一次亏,一次刚好:

亏÷(两次每人分配数的差)=人数

(5)一次盈,一次刚好:

盈÷(两次每人分配数的差)=人数

例:

“小朋友分桃子,每人10个少9个,每人8个多7个。

问:

有多少个小朋友和多少个桃子?

解(7+9)÷(10-8)=16÷2=8(个)………………人数

10×8-9=80-9=71(个)………………桃子

钟表问题:

钟面上按“分针”分为60小格,时针的转速是分针的

,分针每小时可追及

时针与分针一昼夜重合22次,垂直44次,成180o22次。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1