电荷耦合器件CCD.docx

上传人:b****7 文档编号:8942715 上传时间:2023-02-02 格式:DOCX 页数:7 大小:21.59KB
下载 相关 举报
电荷耦合器件CCD.docx_第1页
第1页 / 共7页
电荷耦合器件CCD.docx_第2页
第2页 / 共7页
电荷耦合器件CCD.docx_第3页
第3页 / 共7页
电荷耦合器件CCD.docx_第4页
第4页 / 共7页
电荷耦合器件CCD.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

电荷耦合器件CCD.docx

《电荷耦合器件CCD.docx》由会员分享,可在线阅读,更多相关《电荷耦合器件CCD.docx(7页珍藏版)》请在冰豆网上搜索。

电荷耦合器件CCD.docx

电荷耦合器件CCD

电荷耦合器件CCD

什么是CCD?

  CCD,是英文ChargeCoupledDevice即电荷耦合器件的缩写,它是一种特殊半导体器件,上面有很多一样的感光元件,每个感光元件叫一个像素。

CCD在摄像机里是一个极其重要的部件,它起到将光线转换成电信号的作用,类似于人的眼睛,因此其性能的好坏将直接影响到摄像机的性能。

衡量CCD好坏的指标很多,有像素数量,CCD尺寸,灵敏度,信噪比等,其中像素数以及CCD尺寸是重要的指标。

像素数是指CCD上感光元件的数量。

摄像机拍摄的画面可以理解为由很多个小的点组成,每个点就是一个像素。

显然,像素数越多,画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响,因此,理论上CCD的像素数量应该越多越好。

但CCD像素数的增加会使制造成本以及成品率下降,而且在现行电视标准下,像素数增加到某一数量后,再增加对拍摄画面清晰度的提高效果变得不明显,因此,一般一百万左右的像素数对一般的使用已经足够了。

单CCD和3CCD有何区别?

单CCD摄像机是指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换,其中色度信号是用CCD上的一些特定的彩色遮罩装置并结合后面的电路完成的。

由于一片CCD同时完成亮度信号和色度信号的转换,因此难免两全,使得拍摄出来的图像在彩色还原上达不到专业水平很的要求。

为了解决这个问题,便出现了3CCD摄像机。

3CCD,顾名思义,就是一台摄像机使用了3片CCD。

我们知道,光线如果通过一种特殊的棱镜后,会被分为红,绿,蓝三种颜色,而这三种颜色就是我们电视使用的三基色,通过这三基色,就可以产生包括亮度信号在内的所有电视信号。

如果分别用一片CCD接受每一种颜色并转换为电信号,然后经过电路处理后产生图像信号,这样,就构成了一个3CCD系统。

和单CCD相比,由于3CCD分别用3个CCD转换红,绿,蓝信号,拍摄出来的图像从彩色还原上要比单CCD来的自然,亮度以及清晰度也比单CCD好。

但由于使用了三片CCD,3CCD摄像机的价格要比单CCD贵很多。

数码相机的CCD

问:

数码相机的CCD尺寸有1/1.8英寸、1/2.7英寸,它们有什么不同?

这一尺寸会影响到数码相机的什么功能?

答:

数码相机规格表中的CCD一栏经常写着“1/2.7英寸CCD”等。

这里的“1/2.7英寸”就是CCD的尺寸,实际上就是CCD对角线的长度。

  现有的数码相机一般采用1/2.7英寸、1/2.5英寸和1/1.8英寸等尺寸的CCD。

CCD是受光元件(像素)的集合体,接收透过镜头的光并将其转换为电信号。

在像素数一样的情况下,CCD尺寸越大单位像素就越大。

这样,单位像素可以收集更多的光线,因此,理论上可以说有利于提高画质。

  但是,数码相机画质的好坏不仅是由CCD决定的。

镜头以及通过CCD输出的电信号形成图像的电路的性能等也能够影响到相机的画质。

所谓的“大尺寸CCD=高画质”是不正确的。

例如,虽然1/2.7英寸比1/1.8英寸尺寸小,但配备1/2.7英寸CCD的数码相机并没有受到画质不好的批评。

  现在,袖珍数码相机日趋小巧轻便,出于设计上的考虑,其中大多采用1/2.7英寸的小型CCD。

  顺便说一句,1/2.7英寸的“型”有时也写作“inch”,不过,在这里不是普通的“1英寸=25.4mm”。

由于结合了CCD亮相前摄像机上使用的摄像管和显示方式,因此,习惯上采用比较特殊的尺寸。

 

说到CCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。

感光器件的面积大小,CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。

CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。

CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。

当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。

如果分解CCD,你会发现CCD的结构为三层,第一层是“微型镜头”,第二层是“分色滤色片”以及第三层“感光层”。

第一层“微型镜头”

我们知道,数码相机成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。

但是提高采光率的办法也容易使画质下降。

这一层“微型镜头”就等于在感光层前面加上一副眼镜。

因此感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。

第二层是“分色滤色片”

CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYK补色分色法这两种方法各有优缺点。

首先,我们先了解一下两种分色法的概念,RGB即三原色分色法,几乎所有人类眼镜可以识别的颜色,都可以通过红、绿和蓝来组成,而RGB三个字母分别就是Red,Green和Blue,这说明RGB分色法是通过这三个通道的颜色调节而成。

再说CMYK,这是由四个通道的颜色配合而成,他们分别是青(C)、洋红(M)、黄(Y)、黑(K)。

在印刷业中,CMYK更为适用,但其调节出来的颜色不及RGB的多。

原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。

因此,大家可以注意,一般采用原色CCD的数码相机,在ISO感光度上多半不会超过400。

相对的,补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分影像的分辨率,而在ISO值上,补色CCD可以容忍较高的感光度,一般都可设定在800以上

第三层:

感光层

CCD的第三层是“感光片”,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。

传统的照相机胶卷尺寸为35mm,35mm为对角长度,35mm胶卷的感光面积为36x24mm。

换算到数码相机,对角长度约接近35mm的,CCD/CMOS尺寸越大。

在单反数码相机中,很多都拥有接近35mm的CCD/CMOS尺寸,例如尼康德D100,CCD/CMOS尺寸面积达到23.7x15.6,比起消费级数码相机要大很多,而佳能的EOS-1Ds的CMOS尺寸为36x24mm,达到了35mm的面积,所以成像也相对较好。

现在市面上的消费级数码相机主要有2/3英寸、1/1.8英寸、1/2.7英寸、1/3.2英寸四种。

CCD/CMOS尺寸越大,感光面积越大,成像效果越好。

1/1.8英寸的300万像素相机效果通常好于1/2.7英寸的400万像素相机(后者的感光面积只有前者的55%)。

而相同尺寸的CCD/CMOS像素增加固然是件好事,但这也会导致单个像素的感光面积缩小,有曝光不足的可能。

但如果在增加CCD/CMOS像素的同时想维持现有的图像质量,就必须在至少维持单个像素面积不减小的基础上增大CCD/CMOS的总面积。

目前更大尺寸CCD/CMOS加工制造比较困难,成本也非常高。

因此,CCD/CMOS尺寸较大的数码相机,价格也较高。

感光器件的大小直接影响数码相机的体积重量。

超薄、超轻的数码相机一般CCD/CMOS尺寸也小,而越专业的数码相机,CCD/CMOS尺寸也越大。

 

什么是CCD和CMOS?

二者有什么不同?

CCD即“电子耦合组件”(chargedcoupleddevice),是感应光线的电路装置,当光线经镜头透射,投射到CCD表面时,CCD就会产生电流,将感应到的光信号转换成电信号,以数码的方式储存起来。

CCD上感光组件以矩阵的方式排列,CCD像素越大,也就是说感光组件越多,记录的图像就会越清晰。

如影楼常用的富士S2的CCD输出像素可达1200万。

CMOS即“互补金属氧化物半导体”。

CMOS和CCD一样在数码相机中记录光线的变化。

CMOS的制造技术和一般计算机芯片相似,主要是利用硅和锗这两种元素所做成的半导体,光信号产生的电流即可被处理芯片纪录和存储。

跟CCD相比,CMOS的缺点就是容易出现杂讯,成像质量稍逊于CCD,这主要是因为早期的设计使CMOS在处理影像时,由于电流变化过于频繁而会产生过热的现象。

现在随着技术的发展,CMOS的降噪能力提高,成像质量已接近CCD。

还有,CMOS的优势在于成本低,制造工艺相对简单,早期的CMOS是用在经济型的数码相机中,但随着技术的发展,现在CMOS在高端数码相机中的应用也越来越广泛。

柯达14n为CMOS感光,像素高达1400万。

说到CCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。

感光器件的面积越大,也即CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。

CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。

CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。

当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。

如果分解CCD,你会发现CCD的结构为三层,第一层是“微型镜头”,第二层是“分色滤色片”以及第三层“感光层”。

第一层“微型镜头”

我们知道,数码相机成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。

但是提高采光率的办法也容易使画质下降。

这一层“微型镜头”就等于在感光层前面加上一副眼镜。

因此感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。

第二层是“分色滤色片”

CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYK补色分色法这两种方法各有优缺点。

首先,我们先了解一下两种分色法的概念,RGB即三原色分色法,几乎所有人类眼镜可以识别的颜色,都可以通过红、绿和蓝来组成,而RGB三个字母分别就是Red,Green和Blue,这说明RGB分色法是通过这三个通道的颜色调节而成。

再说CMYK,这是由四个通道的颜色配合而成,他们分别是青(C)、洋红(M)、黄(Y)、黑(K)。

在印刷业中,CMYK更为适用,但其调节出来的颜色不及RGB的多。

原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。

因此,大家可以注意,一般采用原色CCD的数码相机,在ISO感光度上多半不会超过400。

相对的,补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分影像的分辨率,而在ISO值上,补色CCD可以容忍较高的感光度,一般都可设定在800以上

第三层:

感光层

CCD的第三层是“感光片”,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。

传统的照相机胶卷尺寸为35mm,35mm为胶卷的宽度(包括齿孔部分),35mm胶卷的感光面积为36x24mm。

换算到数码相机,对角长度约接近35mm的,CCD/CMOS尺寸越大。

在单反数码相机中,很多都拥有接近35mm的CCD/CMOS尺寸,例如尼康德D100,CCD/CMOS尺寸面积达到23.7x15.6,比起消费级数码相机要大很多,而佳能的EOS-1Ds的CMOS尺寸为36x24mm,达到了35mm的面积,所以成像也相对较好。

现在市面上的消费级数码相机主要有2/3英寸、1/1.8英寸、1/2.7英寸、1/3.2英寸四种。

CCD/CMOS尺寸越大,感光面积越大,成像效果越好。

1/1.8英寸的300万像素相机效果通常好于1/2.7英寸的400万像素相机(后者的感光面积只有前者的55%)。

而相同尺寸的CCD/CMOS像素增加固然是件好事,但这也会导致单个像素的感光面积缩小,有曝光不足的可能。

但如果在增加CCD/CMOS像素的同时想维持现有的图像质量,就必须在至少维持单个像素面积不减小的基础上增大CCD/CMOS的总面积。

目前更大尺寸CCD/CMOS加工制造比较困难,成本也非常高。

因此,CCD/CMOS尺寸较大的数码相机,价格也较高。

感光器件的大小直接影响数码相机的体积重量。

超薄、超轻的数码相机一般CCD/CMOS尺寸也小,而越专业的数码相机,CCD/CMOS尺寸也越大。

最大像素英文名称为MaximumPixels,所谓的最大像素是经过插值运算后获得的。

插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。

插值运算后获得的图像质量不能够与真正感光成像的图像相比。

   在市面上,有一些商家会标明“经硬件插值可达XXX像素”,这也是相同的原理,只不过在图像的质量和感光度上,以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。

   最大像素,也直接指CCD/CMOS感光器件的像素,一些商家为了增大销售额,只标榜数码相机的最大像素,在数码相机设置图片分辨率的时候,的确也有拍摄最高像素的分辨率图片,但是,用户要清楚,这是通过数码相机内部运算而得出的值,再打印图片的时候,其画质的减损会十分明显。

所以在购买数码相机的时候,看有效像素才是最重要的。

   另外,像素也直接和数码照片的输出有关系,下面的列表,为用户提供了数码照片输出和图片像素的关系。

 

有效像素数英文名称为EffectivePixels。

与最大像素不同,有效像素数是指真正参与感光成像的像素值。

最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。

以美能达的DiMAGE7为例,其CCD像素为524万(5.24Megapixel),因为CCD有一部分并不参与成像,有效像素只为490万。

   数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。

像素越大,图片的面积越大。

要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。

所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。

   用户在购买数码相机的时候,通常会看到商家标榜“最大像素达到XXX”和“有效像素达到XXX”,那用户应该怎样选择呢?

在选择数码相机的时候,应该注重看数码相机的有效像素是多少,有效像素的数值才是决定图片质量的关键。

数码相机能够拍摄最大图片的面积,就是这台数码相机的最高分辨率,通常以像素为单位。

在相同尺寸的照片(位图)下,分辨率越大,图片的面积越大,文件(容量)也越大。

通常,分辨率表示成每一个方向上的像素数量,比如640×480等。

   图像包含的数据越多,图形文件的长度就越大,也能表现更丰富的细节。

但更大的文件也需要耗用更多的计算机资源,更多的内存,更大的硬盘空间等等。

在另一方面,假如图像包含的数据不够充分(图形分辨率较低),就会显得相当粗糙,特别是把图像放大为一个较大尺寸观看的时候。

所以在图片创建期间,我们必须根据图像最终的用途决定正确的分辨率。

这里的技巧是要首先保证图像包含足够多的数据,能满足最终输出的需要。

同时也要适量,尽量少占用一些计算机的资源。

   分辨率和图象的像素有直接的关系,我们来算一算,一张分辨率为640×480像素的图片,那它的分辨率就达到了307,200像素,也就是我们常说的30万像素,而一张分辨率为1600×1200的图片,它的像素就是200万。

这样,我们就知道,分辨率的两个数字表示的是图片在长和宽上占的点数的单位。

一张数码图片的长宽比通常是4:

3。

   附:

分辨率是用于度量位图图像内数据量多少的一个参数。

通常表示成ppi(每英寸像素Pixelperinch)和dpi(每英寸点)。

Ppi和dpi(每英寸点数)经常都会出现混用现象。

从技术角度说,“像素”(P)只存在于计算机显示领域,而“点”(d)只出现于打印或印刷领域,请读者注意分辨。

图像分辨率为数码相机可选择的成像大小及尺寸,单位为像素。

常见的有640×480像素;1024×768像素;1600×1200像素;2048×1536像素。

像素数越小,图像的面积也越小相应的其容量也越小。

在实际应用中,大的像素可用于高质量的大幅面输出。

在成像的两组数字中,前者为图片长度,后者为图片的宽度,两者相乘得出的是图片的像素,长宽比一般为4:

3。

在大部分数码相机内,可以选择不同的分辨率拍摄图片。

 

提到数码相机,不得不说到就是数码相机的心脏——感光器件。

与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。

感光器是数码相机的核心,也是最关键的技术。

数码相机的发展道路,可以说就是感光器的发展道路。

目前数码相机的核心成像部件有两种:

一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。

 

CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。

CCD只有少数几个厂商例如索尼、松下等掌握这种技术。

而且CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。

事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。

而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。

成像方面:

在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。

而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。

但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用。

目前,市场销售的数码摄像头中以CMOS感光器件的为主。

在采用CMOS为感光元器件的产品中,通过采用影像光源自动增益补强技术,自动亮度、白平衡控制技术,色饱和度、对比度、边缘增强以及伽马矫正等先进的影像控制技术,完全可以达到与CCD摄像头相媲美的效果。

受市场情况及市场发展等情况的限制,摄像头采用CCD图像传感器的厂商为数不多,主要原因是采用CCD图像传感器成本高的影响。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 起诉状

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1