上海交大医学院细胞生物学技术考试重点样本.docx

上传人:b****8 文档编号:8885625 上传时间:2023-02-02 格式:DOCX 页数:29 大小:114.99KB
下载 相关 举报
上海交大医学院细胞生物学技术考试重点样本.docx_第1页
第1页 / 共29页
上海交大医学院细胞生物学技术考试重点样本.docx_第2页
第2页 / 共29页
上海交大医学院细胞生物学技术考试重点样本.docx_第3页
第3页 / 共29页
上海交大医学院细胞生物学技术考试重点样本.docx_第4页
第4页 / 共29页
上海交大医学院细胞生物学技术考试重点样本.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

上海交大医学院细胞生物学技术考试重点样本.docx

《上海交大医学院细胞生物学技术考试重点样本.docx》由会员分享,可在线阅读,更多相关《上海交大医学院细胞生物学技术考试重点样本.docx(29页珍藏版)》请在冰豆网上搜索。

上海交大医学院细胞生物学技术考试重点样本.docx

上海交大医学院细胞生物学技术考试重点样本

一、显微镜技术

1、分辨率(resolution):

用于表示人眼和仪器,能够辨别两点之间最小距离

的标志,是衡量显微镜性能的重要指标。

人眼的分辨率由人眼的生理结构决定。

光镜由光波波长和物镜数值孔径决

定。

电镜由电子束半波长决定。

分辨率极限:

人眼(0.1mm);光镜(0.2卩m);电镜(0.2nm)。

显微镜技术优化核心是提高分辨率,体现在两个方面:

(1)光源的采用

(2)样品制备和信号呈现方法使信噪比提高。

2、显微镜分类:

(1)光学显微镜:

普通光学显微镜;荧光显微镜(激光扫描共聚焦显微镜、超高分辨率荧光显微镜、活细胞荧光工作站);相差显微镜:

观察活细胞;微分干涉相差显微镜(DIC):

活细胞三维立体投影影像

(2)电子显微镜:

透射电子显微镜(TEM);扫描电子显微镜(SEM);分析电子显微镜;高压电子显微镜;冷冻电子显微镜

(3)扫描探针显微镜:

原子力显微镜

3、普通光学显微镜主要三部分:

聚光镜、物镜、目镜;光源:

可见光样品制备5步:

固定(甲醛);脱水(乙醇);包埋(石蜡);冰冻切片(1-10卩m);苏木精伊红染色(HE染色)

4、荧光显微镜光源:

高压汞灯、弧光灯

荧光的来源:

(1)细胞和组织自发荧光

(2)外源导入荧光蛋白:

动态检测、活体检测、长时间检测、容易融合(3)荧光染料:

吖啶橙染色DNA(绿)、RNA(橙)(4)荧光标记抗体:

荧光染料与抗体共价结合(5)荧光探针:

金属离子探针、细胞内pH值~、细胞内活性氧~、线粒体跨膜电位~。

5、荧光素(Fluorphore):

吸收能量后具有发光现象的物质,一般为吸收短波长的能量后发散出长波长的光,并随照射停止而消失。

荧光素发射光减弱(光漂白)或消失(淬灭)。

6、激光扫描共聚焦显微镜(LSCM):

以激光作为激发光源,采用光源针孔与检测针孔共聚焦技术,对样本进行断层扫描,以获得高分辨率光学切片的荧光显微镜系统。

7、简述激光扫描共聚焦显微镜的原理(光源点,物点,像点,三点共轭)

以激光作为激发光源;结构上采用双针孔装置,形成物像共聚焦的独特设计;激光经过聚光镜焦平面上针孔形成点光源,再经物镜在焦平面对样品逐点扫描。

样品上每个照射点经反射镜在像焦平面的探测针孔处成像,被光电倍增管探测器接收,转为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面共聚焦图像。

&激光扫描共聚焦显微镜的功能:

(1)薄层断层扫描(光学切片)

(2)多通道同时扫描:

激光共聚焦显微镜能够多激光多通道同时扫描

(3)ZOOM成像:

在不变换镜头的情况下,对某幅图片的局部放大,并进行精细逐点扫描成像,获得高分辨率图像。

(4)多维度扫描:

Z轴扫描(垂直)或T扫描(时间)

(5)荧光定量分析

9、激光扫描共聚焦显微镜技术在医学及生物学研究中的应用

(1)静态:

分子定位、定量分析、分子间相互作用

(2)动态:

分子或细胞活动的动态变化:

蛋白质的移位;蛋白质相互作用的研究(FRET)

;分子运动的测量(FRAP);离子浓度变化趋势的检测

10、简述激光扫描共焦显微镜与荧光显微镜的差别。

LSCM勺优缺点。

类别

LSCM

荧光显微镜

光源

激光(紫外光、可见光、近红外)

短波长光源(多为紫外光)

照明方式

点照明、逐点扫描

落射式

样本信号

焦平面的样本信号,几乎无次级荧光干扰

可有多个平面的样本信号,

伴随相邻部位干扰

图像采集系统

荧光信号被PMT探测器接收实时观测,数字化图像,能够

照相机的原理

进行图像处理和定量分析

LSCM勺优缺点:

LSCM优点:

(1)高水平分辨率:

0.18卩m

(2)高垂直分辨率:

沿Z轴逐层扫描

(3)高灵敏度,信噪比良好(4)能定时、定位、定性、定量

缺点:

(1)分辨率极限:

0.15卩m

(2)观测厚度:

50-100卩m(3)逐点扫描,成

像速度慢(4)伪彩色

11、LSCM和电子显微镜的区别

激光共聚焦显微镜

电子显微镜

工作原理

光波的透射

电子的透射

成像效果

微米级(荧光标记)

纳米级

研究目的

观祭分布、表示量

观察细微结构

12、超高分辨率荧光显微镜的原理:

”突破”衍射极限,提高分辨率(50nm)

(1)基于点扩展函数调制:

点扩展函数变小

(2)基于随机单分子定位:

不会有两个靠的很近的点同时亮起来

13、电子显微镜:

以电子束为光源,电磁场为透镜,利用电子信号成像,具有高分辨率和放大倍数的显微镜,用于研究组织和细胞的超微结构。

14、电子束:

又称电子射线,电子束带负电荷,具有光的波动性、可折射性,电镜利用电子束作为”光源”成像。

15、透射电子:

当样品厚度小于100nm时,部分电子可穿透样品,将穿透样品的电子叫做透射电子,利用透射电子信息成像的称为透射电镜。

16、二次电子:

在入射电子的轰击下,样品表面5-50nm深度激发出来的电子称为二次电子,利用二次电子信息成像的称为扫描电镜。

17、TEM成像和工作原理:

(1)电子束投射在样品上,部分电子直接穿透样品产生透射电子

(2)带有样品信息的透射电子经成像系统放大,投射到荧光屏上

(3)透射电子多,荧光屏亮;反之荧光屏暗,荧光屏的亮暗程度与样品微细结构一一对应,产生具有一定反差的黑白影像

18、超薄切片:

将环氧树脂包埋的组织块切成100nm以下的薄切片称为超薄切片,超薄切片经电子染色后在TEM下观察组织细胞内部的超微结构。

19、血管灌注固定:

血管灌注固定是经过血管灌注适量的固定剂,在动物体内把活细胞在原位及时固定。

血管灌注固定速度快,固定均匀,可减少离体或死亡后缺氧引起自发性的变化影响,特别是对脑、心肌、肾脏等对缺氧比较敏感的组织尤为重要。

20、TEM的样品制备

(1)超薄切片技术(9步):

取材(1分钟内将新鲜标本放入固定液);预固定(新鲜配制2.5%戊二醛);后固定(1%锇酸);脱水(乙醇和丙酮);浸透;包埋聚合(环氧树脂);修块;切片(半薄切片:

500nm;超薄切片:

50-100nm);染色(甲苯胺蓝)。

(2)负染色技术:

经过重金属盐在样品四周堆积,加强样品外周的电子密度,衬托样品的形态和大小。

(染色液:

磷钨酸、醋酸双氧铀)

(3)免疫电镜技术:

是将免疫学方法与电子显微镜技术相结合,利用抗原与抗体特异结合的特性,在超微结构水平定位特异大分子的技术。

A、包埋前法:

先免疫标记,后包埋,制备超薄切片;包埋后法:

先包埋,制备超薄切片,后免疫标记;冷冻超薄切片法:

将标本直接切成超薄切片,进行免疫反应,电镜观察。

B、推荐固定液:

3〜4%多聚甲醛+0.1%〜0.5%戊二醛;

C、要求:

免疫组化结果一定要好;固定液配制要新鲜;尽快处理标本。

21、在样本制备过程中为什么要进行半薄切片定位?

(1)选取超薄切片的部位,超薄切片的面积一般要小于0.5mm2,要经过半薄切片来选取有意义的部位。

(2)对同一部位进行光、电镜对比观察,在较大范围内了解组织结构、病变部位和病理性质,有利于更确切的认识超薄切片中的结构及其相互关系。

22、要了解细胞内部的超微结构变化,选择哪种类型的电镜,为保证生物样品良好的超微结构,在样本取材及固定时应注意什么?

了解细胞内部的超微结构变化应选择透射电子显微镜(TEM)

为保证良好的超微结构,在样本取材及固定时应注意做到快、小、轻、冷。

(1)快:

在1分钟内固定组织,尽可能保持其活体状态,因为瞬间的拖延都会导致细胞超微结构的变化。

(2)小:

组织块必须切成1mm的小块,组织块过大其中央得不到及时固定会发生细胞自溶现象。

(3)轻:

不要牵拉、锯、挤压组织。

要用锐利的刀片,避免细胞受到损伤。

(4)冷:

低温操作,4C保存,降低酶的活性,避免组织发生自溶。

23、在透射电镜样本取材时,样本不可大于1mm3,并在1分钟以内完成固定。

请问如果组织块过大会出现什么后果?

没有及时固定的组织电镜下会出现何种改变?

由于电镜固定液戊二醛对组织的穿透能力较弱,如果组织块过大会造成组织中心得不到及时固定,在电镜下没有得到及时固定组织细胞的细胞器会发生变性,特别是对缺血乏氧十分敏感的线粒体会出现肿胀和空泡变性等改变。

24、如何描述一张电镜图片。

(1)细胞整体:

大小、形状、细胞膜和突起以及细胞间的连接

(2)细胞核:

大小、形状、核仁、染色质等

(3)细胞质:

各种细胞器的数量、分布、形状等(Mit、RER、Ri、Ly、Gol…)

25、TEM在医学领域的应用

(1)细胞器、组织器官的超微结构

(2)原核细胞、病毒的超微结构

(3)超微病理变化(病理诊断)

(4)细胞成分定位

(5)生物材料复合体

26、扫描电镜的样品制备过程(6步):

取材(充分暴露并保护观察面:

5x5mm);清洗(用生理盐水仔细漂洗观察面);固定(2.5%戊二醛和1%锇酸固定);脱水(丙酮逐级脱水,醋酸异戊酯置换);干燥:

(临界点干燥);镀膜(离子溅射镀膜或真空镀膜)

27、扫描电子显微镜在生物医学领域的应用:

(1)血细胞、细菌、培养细胞的整体形态、表面突起和细胞间相互关系

(2)消化道,呼吸道,血管等空腔组织的表面结构

(3)植物、昆虫等

(4)生物材料复合体

28、扫描电镜用于观察组织表面结构,因此取材时必须要充分暴露组织表面结构,请问常见的方法和注意事项有哪些?

在样品取材时必须保护好并充分暴露观察面,避免损伤要观察的部位,易卷曲的样品,如气管、胃、肠粘膜可固定在滤纸上展平,要将表面的血液、粘液用生理盐水或缓冲液仔细漂洗干净,对于粘稠附着物还能够使用酶消化法。

29、请从成像信号、样品制备、图象特点和应用几方面对TEM和SEM做以比较。

类别

TME

SEM

分辨率

0.1nm

0.6nm

放大

100万倍

80万倍

成像信号

透射电子信号

利用二次电子信号成像

样品制备

制成超薄切片等,制备过程复杂

方法较简单,标本可大而厚

图像特点

二维结构,平面图像

三维结构图像,立体感强

应用

观察组织细胞内部的超微结构

观察样品表面及其断面立体形貌

二、细胞化学技术

1、原位观察化学成分,提供的信息:

(1)推测化学成分(大分子)的可能性

(2)观察生理、病理状态下大分子动态变化

(3)指示大分子所在的特异细胞,观察细胞在组织的分布

2、细胞化学技术:

在保持细胞结构完整的条件下,借助细胞中的化学反应在细胞原位确定化学成分的分布及这些成分在细胞活动中的动态变化的技术,用以

阐明细胞化学成分、结构和功能的关系。

包括酶细胞化学技术、免疫细胞化学技术、放射自显影技术和原位杂交等。

3、细胞化学技术特点:

(1)原位(保持组织细胞的天然结构)

(2)细胞化学反应及可见性

(3)细胞化学反应的观察:

显微镜、流式

4、细胞化学技术主要包括:

(1)酶细胞化学技术:

1.酶+底物反应;2.显色反应。

显示酶在细胞内的分布及酶活性强弱。

(2)免疫细胞化学技术:

1.抗原+抗体反应;2.显色反应

(3)放射自显影:

1.放射性同位素衰变和射线的释放反应;2.感光

(4)原位杂交技术等:

1.核酸杂交反应;2.显色反应

5、细胞化学技术通用流程:

(1)组织细胞固定(保持原位)

(2)石蜡包埋或冷冻

(3)切片(利于反应,利于观察)

(4)化学反应

(5)显色反应

6免疫组织化学、免疫细胞化学技术(IHC):

把组织细胞中的特异分子作为

抗原,利用抗原抗体特异性结合的特点,用显微镜下可见的标记物直接或间接标记抗体或抗原抗体复合物,使之在显微镜下可见,从而间接地显示抗原,达到在细胞或细胞器水平定位特异分子的目的。

特异蛋白质定位:

1.大分子的组织和细胞水平定位2.细胞内大分子的固定亚细胞定位3.细胞内大分子的转运或移位4.细胞内定位固定的大分子的动态变化5.细胞内大分子的共定位

7、免疫细胞化学技术原理

一、抗原:

凡能刺激机体产生抗体并能与抗体特异结合的物质称为抗原,酶、受体、抗体

二、抗体:

结合抗原、结合抗种属抗体:

识别一抗的种属特异性,并能够因此结合一抗,称为二抗

三、免疫反应的特异性

四、免疫细胞化学反应:

(1)直接法;

(2)间接法优点:

避免标记造成对抗

体与抗原结合的影响;信号增强;标记物多。

五、标记物的显色反应(光镜和电镜):

(1)免疫荧光;

(2)免疫酶;(3)免疫胶体金颗粒

8、免疫荧光技术(IF):

免疫荧光技术将荧光素作为标记物使组织细胞中形成的抗原抗体复合物在荧光显微镜下可见,从而显示抗原物质的定位。

(培养细胞、动物组织)

9、免疫荧光技术优点:

(1)双重或多重标记,同时比较不同分子的位置及量的关系。

(2)双重或多重标记,同时染色细胞器和感兴趣分子,可显示分子的亚细胞定位信息。

(3)根据荧光素的强度,进行半定量分析。

10、免疫酶技术:

是将酶作为标记物使组织细胞中形成的抗原抗体复合物得到

标记,再经过酶细胞化学反应产生显微镜下可见的显色物质,间接显示抗原物

质的定位。

普通光学显微镜即可观察。

(动物组织、多种类型细胞)常见标记酶:

辣根过氧化物酶(HRP);碱性磷酸酶(AKP)

11、亲和物质:

具有多价能力的物质,与另一种亲和物质有高度亲和力,又能与抗体、蛋白质及各种标记物(特别是酶)结合。

12、生物素系统标记酶和抗体:

(1)LSAB法:

标记链球菌亲和素-生物素技术

1特异性抗体(一抗)先与组织细胞中的抗原结合

2生物素化抗体(二抗)再与一抗结合

3链球菌亲和素联接的过氧化物酶与生物素化抗体结合

(2)ABC法:

亲和素-生物素-酶复合物技术

亲和素与生物素偶联的过氧化物酶组合成亲和素-生物素-酶复合物

1特异性抗体(一抗)先与组织细胞中的抗原结合

2生物素化抗体(二抗)再与一抗结合

3复合物与生物素化抗体结合

13、免疫亲和技术优点:

(1)观察定位信息时,可观察感兴趣分子在细胞中的相对定位,也可观察分子在组织中的细胞特异性;(在组织样品中应用较多)

(2)同时观察阳性信号和阴性信号;

(3)反应后标本材料可长期保存。

14、免疫胶体金技术:

以电镜下可见的胶体金作为抗体标记物,间接显示组织细胞中特异分子的技术。

(培养细胞)

15、原位杂交技术(ISH):

利用核苷酸碱基配对原理,用含有特异序列、经过标记的核酸单链即探针,在适宜条件下与组织细胞中的互补核酸单链即靶核酸发生杂交,经过检测标记探针,从而在细胞原位显示特异的DNA或RNA分子。

变性:

双链DNA分子在一些因素作用下两条链解离的过程称为变性

复性:

变性的两条互补DNA单链在适当条件下重新缔合成双链的过程称为复性杂交探针:

经过标记的核酸单链,其序列已知,或序列未知但已知其针对何靶分子。

主要有

cDNARNA和寡核苷酸三种。

靶分子:

指所要探测的核酸分子或核苷酸序列

严格度:

在某些条件下,探针能够与含不相配碱基的核酸序列结合而形成不稳定的杂交体。

决定探针是否与含不相配碱基的核酸序列结合的条件称为严格度。

高严格度条件

下,碱基完

全互补的双链才可形成杂交体。

低严格度条件下,碱基对不完全互补的双链也能形成杂交体。

16、原位杂交技术中如何应用了其它几种细胞化学技术?

为什么说原位杂交技术是分子生物学和细胞化学技术的结合?

①标记的核酸探针与组织细胞中靶核酸分子按碱基配正确原则结合形成杂交体,这是分子生物学技术

②检测杂交体的存在可选用放射自显影或免疫细胞化学技术,如探针标记的是同位素,则选用放射自显影技术;如用地高辛标记核酸探针,使用碱性磷酸酶联结的小鼠抗地高辛抗体与探针结合,这里应用的是免疫细胞化学技术③为了使酶可见,再加入其底物四唑氮蓝和吲哚酚,最终形成蓝紫色物质,这就是酶细胞化学技术,最终产生的蓝紫色物质一酶的定位T探针一靶核酸

17、原位杂交技术常常组合了其它组织化学技术。

简述如果你使用其中一种组合你需要准备。

(1)选择地高辛标记的特异性cDNA探针一用AKP标记的小鼠抗地高辛抗体与杂交体结合一在孵育液中加入AKP的反应与捕捉底物对NCIP/NBT-得到蓝紫色的沉淀。

(2)使用光学显微镜观察蓝紫色沉淀即可间接定位杂交体,验证靶核苷酸的存在。

18、如果你的研究课题分别涉及到在培养细胞或组织切片上定位蛋白质的要求

你如何考虑对技术的选择。

(1)组织和细胞水平定位:

IHC+光镜(酶标)/荧光显微镜(荧光标)/共聚焦

(荧光标)

(2)亚细胞定位:

IHC+电镜(胶体金标)荧光+共聚焦

(3)细胞内大分子的转运或移位translocation实验处理+综合1/2/5

(4)细胞内定位固定的大分子含量的动态变化dynamics实验处理+综合

1/2/5

免疫荧光+confocal共定位

(5)细胞内大分子的共定位co-localization(转染+重组tag+免疫荧光;或转染+重组GFP);也能够用连续切片也可用

大小金标+电镜

19、简述如何应用细胞生物学技术初步阐明一个新的蛋白质的定位和功能。

(1)定位如上题

(2)弄清了定位、动态及共定位之后,需要了解功能还能够了解生成:

DNA水平:

SouthernblotDNAchip;qPCR

mRNA水平:

northernblotq-rtPCR(不过这些仿佛都是分生的内容)

(3)功能:

作为酶的功能、作为递质的功能、作为转录因子的功能找出了相互作用的蛋白,再从这associate着手确定新蛋白的功能。

:

比如新蛋白是否影响已知蛋白的生成和降解,是否影响已知蛋白行使功能降解/转运。

Plus寻找互相作用方式的分生方法

cDNA文库+酵母双杂交,蛋白质体外结合实验(pull-downassay)+质谱分析,

CoIP

首先按蛋白质组学的方法做蛋白指纹图谱比对数据库寻找类似结构域,对它的功能进行合理的预测;然后根据预测的结果设计实验设计实验大致能够由”过表示会怎样””敲除会怎样”两个角度出发,从宏观上观察细胞的形状、功能改变,从微观上定性定量上下游分子量的改变,最后在活体环境中验证。

20、定量检测一批光镜切片上含有某种蛋白质的细胞的数目首先对切片上的全部细胞进行针对目的蛋白的荧光探针特异性标记(荧光染料,荧光标记抗体,外源导入荧光蛋白),同时对细胞行核复染。

再以荧光显微镜或激光扫描共聚焦显微镜观察。

三、离心技术

1、离心技术(Centrifuge):

利用溶液中颗粒密度、大小等特性,用旋转产生

的离心力使不同特性颗粒从溶液中分离并沉降,从而达到分离、浓缩、提纯和鉴定的目的,称为离心技术。

2、决定离心行为的主要因素:

(1)颗粒的属性:

颗粒大小、密度等特性

(2)溶液和设备:

离心机、离心介质;”三要素”:

颗粒的沉降系数、相对离心力(RCF)、离心时间

3、沉降系数:

颗粒在单位离心力的作用下的移动速度。

决定沉降速度的因素:

颗粒大小;颗粒密度;溶液介质密度和粘度

4、相对离心力:

离心分离时,作用在悬浮颗粒上的力与其地球重力(平时质量)的比值。

5、离心的适用范围:

(1)分离细胞或其它的悬浮颗粒;

(2)从组织或细胞匀浆中分离细胞器;(3)分离病毒和大分子,包括DNA、RNA、蛋白质和脂类。

6、差速离心法:

经过一系列递增速度的离心,将不同大小颗粒分离。

先在低速离心条件下把大的颗粒沉降到管底,其它颗粒留在上清液中;然后以较高的速度离心,把较大的颗粒沉淀于管底。

这样依次把不同大小的颗粒逐级分离。

用途:

分离大小相差悬殊的细胞和细胞结构成分特点:

介质密度均一;速度由低向高,逐级离心;操作简单;分离纯度不高。

7、密度梯度离心法

理想的溶液介质(蔗糖):

形成的溶液密度范围大;粘度低;对细胞成分损伤小;离心分离后容易去除;浓度容易测定;便宜。

(1)移动区带离心法

原理:

用梯度蔗糖或甘油作为介质,将要分离的样品放在介质表面,形成一个狭带,然后超速离心,使不同大小的颗粒以不同的速度向管底方向移动,形成一系列区带,从管底小孔中分次收集各种颗粒成分。

用途:

分离有大小和密度差异的细胞或细胞器。

特点:

介质为密度梯度溶液,且密度较低,介质的最大密度应小于被分离生物颗粒的最小密度(rp>rm);必须注意离心时间(t),不能使所有颗粒都沉到管底。

(2)等密度离心法

原理:

离心时采用包括各种颗粒密度范围的梯度介质,被分离颗粒达到与其相同的密度介质时不再移动,形成一系列区带,然后从管底收集。

用途:

分离密度不等的颗粒,适用于病毒、DNA、RNA、蛋白质等。

特点:

介质密度较高,陡度大,介质的最高密度应大于被分离组分的最大密度

(rp

所需的力场一般比速率沉降法大10~100倍,往往需要高速或超速离心。

8、细胞结构成分的分离:

(1)细胞沉淀

(2)细胞破碎(渗透压、超声波、机械力研磨或剪切、重复冻融)

(3)细胞结构成分的分离-离心技术(差速分离、梯度纯化)

(4)分离细胞器的鉴定和评价(形态:

显微镜;生化分析:

细胞器标志酶)

四、细胞培养

1、细胞培养:

从生物体内取出组织或细胞,在体外模拟体内生理环境,在无菌、适当温度和一定营养条件下,对这些组织或细胞进行孵育培养,使之生存和生长,并保持一定的结构和功能的技术。

2、简述培养细胞和体内细胞的异同。

培养细胞

体内细胞

无神经体液调节无其它类型细胞影响

机体神经体液调节多种类型细胞相互影响

细胞的许多外来信号被切断

基因表示受到外来信号调节

1.特疋分化基因表示减弱或停止

2•增殖活动维持

(由特殊到一般)

增殖过程中不断发生着分化

(由一般到特殊)

与体内细胞结构和功能的差异

高度特化的结构和功能

特征:

失去原有形态,分化特性减弱,形态和功冃匕趋于单;疋代数后衰老死亡,或发

生转化,获不死性而成为能无限传代;对营养要求

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1