(2)当R2→∞时C0=4πε0R1,孤立球形电容器。
三、电容器的并联和串联
1.电容器的并联
q
q=∑qi,V=Vi=i,C=∑Ci
Ciii并联电路总电容量增
大,电容组耐压值不变。
2.电容器的串联
q=q1=q2=qi,
V=∑Vi,
i
11=∑CiCi
串联电路总电容量减少,电容组耐压值增大。
但如其中一个被击穿,其余电容器会相继被击穿。
例9-3(P105)作业:
P148第2题P149第7题
第四节电介质及其极化
重点:
电介质的极化和极化强度矢量;电位移矢量;有介质时的高斯定理;有介质时电场强
度的计算。
难点:
电位移矢量
电介质:
指电阻率很大,导电性能很差的物质。
例如:
氢(气)、纯水(液)、云母(固)。
我们先从实验现象入手讨论电介质和静电场的相互作用规律。
一、电介质对电容的影响相对电容率1.实验事实相对电容率
(1)如图所示,平板电容器极板间为真空时的电容为C0。
若对该电容器充电至两极板间的电压为U0,则相应地极板上的电荷为Q=C0U0。
此时若撤去电源,维持极板上的电
荷Q不变,并使两极板间充满均匀的各向同性的电介质,由实验可测得两极板间电压U=U0r。
(2)由平板电容器电容公式得:
C=εrC0,即在维持电容器两极板的电荷不变
时,充满电介质的电容器的电容为真空电容的εr倍。
其中εr为是一个没有单位的、
大于1的纯数,称为电介质的相对电容率。
(3)定义:
电介质的电容率ε=ε0εr,εr、ε都是表征电介质性质的。
表9-1(P103)电介质的相对电容率和击穿场强值
2.电场强度的变化
(1)把U=U0εr两边同除以d得Ud=U0εrd
εr即
可见,在两极板电荷不变的条件下,充满均匀的各向同性的电介质的平板电容器中,电介质内的电场强度为原来真空时电场强度的r。
(2)当极板上加一定的电压时,极板间就有一定的电场强度,电压越大,电场强度也越大。
当电场强度增大到某一最大值Eb时,电介质中分子发生电离,从而使电介质失去绝缘性,即电介质被击穿了。
电介质能承受的最大电场强度Eb称为电介质的击穿场强,相应两极板的电压称为击穿电压Ub。
Eb与Ub的关系为Eb=Ubd。
不同电介质的击穿场强是不同的。
上述实验表明:
插入电介质后两极板间电压减少,电场减弱了。
电场减弱的原因可用电介质与外电场的相互影响,下面从微观结构上来解释。
二、电介质的极化
1.电介质的电结构
(1)电子被原子核紧紧束缚;
(2)在静电场中电介质中性分子中的正、负电荷仅产生微观相对运动;
(3)在静电场与电介质相互作用时,电介质分子简化为电偶极子。
电介质由大量微小的电偶极子组成;
(4)电介质在外电场中→极化→产生极化电荷→产生附加电场→作用于电介质→达到静电平衡。
2.电介质的内部结构
(1)有极分子,无外电场时,分子的正、负电荷中心不重合,分子具有固有电偶极矩。
例如:
H2OHClCOSO2。
(2)无极分子,无外电场时,分子的正、负电荷中心重合,分子没有固有电偶极矩。
。
例如:
CO2H2N2O2He。
3电介质的极化(Polarization)
(1)位移极化Displacementpolarization
主要是电子发生位移。
(2)取向极化Orientationpolarization:
等效偶极子转向外电场的方向。
4.极化电荷Polarizationcharge(或束缚电荷bound
charge)
下面看看外电场中的电介质极化的宏观效果:
在外电场中,均匀介质内部各处仍呈电中性,但在介
质表面要出现电荷,这种电荷不能离开电介质到其它带电
体,也不能在电介质内部自由移动。
我们称它为束缚电荷E=E0
或极化电荷。
它不象导体中的自由电荷能用传导方法将其引走。
在外电场作用下,电介质出现束缚电荷的现象称为电介质的极化。
(如何定量描述?
)5.电晕现象的解释:
三、电极化强度
宏观上,电介质极化程度用电极化强度矢量来描述。
1.电极化强度矢量
p∑ii
P=lim
i是第i个分子的电偶极矩。
ΔVΔV,其中
(1)定义:
p
(2)P与σ'的定量关系
如图,在平板电容器两极板间的介质内沿着P方向取一长度为dl,横截面为dS的小
-2
P称为电极化强度。
单位为:
C⋅m。
圆柱体,在其内部极化可视为是均匀的。
因而该圆柱体具有电偶极矩为PdV=P⋅dl⋅dS,根据定义它可视为两端具有电荷±σ'dS的电偶极矩,因此P⋅dS.dl=σ'dSdl,即P=σ'。
可见均匀电介质中的电极化强度的大小等于极化产生的极化电荷面密度。
四、电介质中的电场强度Q'与Q0的关系
1.电介质中的电场强度
'E=E+EE0外电场E0,极化电荷产生的电场E',电介质内部的合场强E为:
,E'与0的方
向相反,因此E的值为E=E0-E'。
2.极化电荷与自由电荷的关系
E当两极板间充满均匀的各向同性的电介质后,在它的两个垂直于0的表面上分别出现正、负极化电
Eσ极板上自由电荷面密度为0。
在放人电介质以前,自由电荷电场强度0的值为E0=σ00,
荷,其电荷面密度为σ'。
相应的电场强度E'的值为E'=σ'0。
则由上式以及前面实验结果得
E
E=E0-E'=0
εr
E'=
即
εr-1
E0
εr
εr-1
σ0
εr
σ'=
从而可得
Q'=
亦即
这就是极化电荷与自由电荷的关系。
3.电极化强度与电场强度的关系
(1)实验规律
(2)χ和相对电容率εr的关系由E0=σ00
较得:
χ=εr-1。
χ、εr、
εr-1
Q0
εr
对均匀线性介质有:
P=χε0E,χ称为电介质的电极化率,是一个大于零的纯数。
ε-1εε
σ'=rσ0→σ0=rσ'σ0=rσ'
εrεr-1比χ,、P=χε0E、P=σ'代入E0=εrE可得:
和
(3)χ和εr的讨论:
课本P77。
ε
三者都是表征电介质性质的物理量,知道其中之一即可求得其它两个。
并且普遍适
用。
例9-4(P113)
第五节电位移有电介质时的高斯定理
一、电位移矢量
空间存在导体时,电场仍由自由电荷产生。
高斯定理,场强环流定理仍然适
用,且形式不变。
存在电介质时,空间电场由自由电荷和极化电荷共同产生。
产生的静电场仍为有势场。
静电场的环流定理仍然成立,即L。
静电场中的高斯定理仍然成立(高斯面如图),形式变为:
1ES⋅dS=ε0∑(Q0+Q')因为:
所以:
E⋅dl=0P⋅dS=-∑dQ'SS(S内),01E⋅dS=
(S内)即:
S
定义电场辅助矢量——电位移(electricdisplacement)矢量:
D=ε0E+P(ε0E+P)⋅dS=∑Q0ε0∑Q-1ε0P⋅dSS二、有电介质时的高斯定理D⋅dS=∑q0S(S内)由上面讨论可得:
通过电介质中任一封闭曲面S的电位移通量等于该曲面所包围的自由电荷的代数和,这就是有电介质时的高斯定理。
三、讨论和说明
P=χεED=εE+P得:
0对于各向同性电介质,把代入0D=ε0E+P=ε0E+χε0E=ε0(1+χ)E
注意到1+χ=εr,且ε=ε0εr,则有:
-2D2.的单位:
C⋅mDE3.是一个辅助量,决定电荷受力的仍然是。
当已知自由电
ED荷的分布时,可先由高斯定理求出,再由上式求出电介质中的。
1.电位移D与场强E的关系D=εE
要注意,描述电场性质的物理量仍然是电场强度E和电势V。
QDD04.通量与有关,而与Q0、Q'均有关。
5.D线与E线不同,D线从正自由电荷出发,终止于负自由电荷,而E线起止于各种正、负电荷,包括自由电荷和极化电荷。
E0V06.电介质中的场强和电势与真空中的场强和电势的关系(均匀电介质充满整个电场,或电介质表面是等势面时)E=εr,
V=εr
而充满了电介质的电容为真空中电容的ε
r
布置作业课本P.96第13题课本P.97第18题
例9-5:
(课本P.121,请自学)
例9-6:
(课本P.123,请自学)
例3:
圆柱形电容器上由半径为R1的长直圆柱导体和与它同轴的薄导体圆筒组成,圆筒的半径为R2。
若直导体与导体圆筒之间充以相对电容率为εr的电介质。
设直导体和圆筒单位长度上的电荷分别为+λ和-λ。
求
(1)电介质中的场强、电位移和极化强度;
(2)电介质内、外表面的极化电荷面密度;(3)此圆柱形电容器的电容。
D⋅dS=D2πrl=λl
解:
(1)由对称性分析,电场为柱对称分布,根据介质中的高斯定理,有S
λD=
2πr。
可得:
λ(R1〈r〈R2)E=
D=εεE=εE2πεεr0r0r由得电介质中场强为:
电介质中极化强度为:
P=(εr-1)ε0E=
λ
E=
2πε0εrr
(2)由
(εr-1)λ
2πεrr
(R1〈r〈R2)
得知电介质两表面处的场强分别为:
E1=
λ
2πε0εrR1
(r=R1)
E2=
和
由P=χeε0E和σ'=P得电介质两表面极化电荷面密度的值分别为:
λ2πεrR1
λ
'=(εr-1)ε0E2=(εr-1)σ2
2πεrR2
'=(εr-1)ε0E1=(εr-1)σ1
(3)圆柱形电容器两极板间的电势差为
λ
2πε0εrR2
(r=R2)
R2
U=⎰E⋅dl=⎰
R1
λdrλR
=ln2
2πε0εrr2πε0εrR1
C=
得电容
Q=U
λlln2
2πε0εrR1
Cl=
=
2πε0εrlln2
R1,C=εrC0
单位长度电容为:
2πε0εr
Rln2
R1。
第六节
*电场的边值关系
一、电场的边值关系:
1、定义:
普遍情况下,将描述静电场的两个普适定理应用到电介质的分界面上,得
出电位移D和场强E在靠近界面两侧处的量值的变化关系,这就是通常所说的电
场的边值关系。
2、规律:
(书P128图9-35)
设分界面两侧的电位移D1和D2的方向与分界面法线的夹角分别为θ1和θ2。
作图中圆柱
形闭合面S,其轴线与分界面正交,圆柱底面紧贴分界面的两侧,底面积S0,闭合面内的自由电荷为零,所以通过此闭合曲面的电位移通量等于零。
圆柱高度极度短,侧面的电位移通量可以略去,椐高斯定理得:
D∙dS=-D1cosθ1∙S0+D2cosθ2∙S0=0
s
所以D1cosθ1=D2cosθ2(9-27a)
即D1n=D2n(9-27b)
结论:
电介质分界面上没有自由电荷时,电位移的法向分量在分界面的两侧是相等的。
对均匀电介质D=εE,则有ε1E1n=ε2E2n(9-28)
AD段很短接近零可略去。
椐场强环路定理(P128图9-36)知:
静电场中沿任意闭合回路E的线积分为零。
回路和E∙dl=E1sinθ1AB-E2sinθ2CD=0
得E1sinθ1=E2sinθ2
E1t=E2t(9-29)
结论:
电介质分界面的两边电场强度的切向分量是相等的。
D由E=得:
ε
第七节电荷间的相互作用能静电场的能量
一、电容器的电能
如图所示,平行板电容器正处于充电过程中,设在某时刻两极板之间的电势差为
U,此时若继续把+dq电荷从带负电的极板移到带正电的极板时,外力因克服静电力而需作的功为:
dW=Udq=
直至电容器两极板分别带有±Q的电荷时,外力所作的总功为:
1QQ2
W=
⎰0qdq=C2C
该功使电容器的能量增加,即电容器贮存的电能为:
1qdqC
可见,在电容器的带电过程中,把非静电能转换为电容器的电能了。
二、静电场的能量能量密度
从电场的观点来看,带电体或带电系统的能量也就是电场的能量。
平行板电容器的极板面积为11
S,间距d,则此电容器贮存的能量为
11εS11We=CU2=(Ed)2=εE2Sd=εE2V
22d22
式中V表示电容器内电场空间所占的体积。
在静电场中,“电荷是能量的携带者”与“能量的携带者应当是电场”这两种观点是等效的。
但对于变化的电磁场来说,惟有认为电磁波能量的携带者是电场和磁场。
因此如果某一空间具有电场,那么该空间就具有电场能量。
所以电场的能量应以电场强度来表述。
1.能量密度
单位体积内所贮存的电场能量,亦即电场能量密度为:
2.静电场的能量
we=
We121=εE=DEV22
例题1:
(课本P.84,请自学)
1
We=⎰VwedV=⎰V(DE)dV
2
第八节铁电体压电体永电体
静静电电学学复复习习第一节电场强度
一、内容提要
1.电场强度
FE=
q0
F1QE==er
2
q4πεr002.点电荷的场强公式
3.场强叠加原理
点电荷系在某点产生的场强,等于每一个点电荷单独存在时在该点分别产生