PN结的伏安特性与温度特性测量.docx

上传人:b****7 文档编号:8691946 上传时间:2023-02-01 格式:DOCX 页数:9 大小:99.61KB
下载 相关 举报
PN结的伏安特性与温度特性测量.docx_第1页
第1页 / 共9页
PN结的伏安特性与温度特性测量.docx_第2页
第2页 / 共9页
PN结的伏安特性与温度特性测量.docx_第3页
第3页 / 共9页
PN结的伏安特性与温度特性测量.docx_第4页
第4页 / 共9页
PN结的伏安特性与温度特性测量.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

PN结的伏安特性与温度特性测量.docx

《PN结的伏安特性与温度特性测量.docx》由会员分享,可在线阅读,更多相关《PN结的伏安特性与温度特性测量.docx(9页珍藏版)》请在冰豆网上搜索。

PN结的伏安特性与温度特性测量.docx

PN结的伏安特性与温度特性测量

PN结的伏安特性与温度特性测量

半导体PN结的物理特性是物理学和电子学的重要基础内容之一。

使用本实验的仪器用物理实验方法,测量PN结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。

本实验的仪器同时提供干井变温恒温器和钳金电阻测温电桥,测量PN结结电压(4,与热力学温度T关系,求得该传感器的灵敬度,并近似求得0K时硅材料的禁带宽度。

【实验目的】

1、在室温时,测量PN结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。

2、在不同温度条件下,测量玻尔兹曼常数。

3、学习用运算放大器组成I-V变换器测量106A至10-8A的弱电流。

4、测量PN结结电压t/缺与温度关系,求出结电压随温度变化的灵敏度。

5、计算在0K时半导体(硅)材料的禁带宽度。

6、学会用钳电阻测量温度的实验方法和直流电桥测电阻的方法。

【实验仪器】

FD-PN-4型PN结物理特性综合实验仪(如下图),TIP31c型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,钳电阻一只。

【实验原理】

1、PN结伏安特性及玻尔兹曼常数测量山半导体物理学可知,PN结的正向电流-电压关系满足:

1=1^'^-\\

(1)

(1)中/是通过PN结的正向电流,/()是反向饱和电流,在温度恒定是为常数,T是热力学温度,e是电子的电荷量,(/为PN结正向压降。

由于在常温(300K)时,kT/e-Q.Q26v,而PN结正向压降约为十分之儿伏,则严⑷>>1,

(1)式括号内-1项完全可以忽略,于是有:

I=I严t

(2)

也即PN结正向电流随正向电压按指数规律变化。

若测得PN结关系值,则利用

(1)式可以求出。

"八在测得温度T后,就可以得到常数,把电子电量作为已知值代入,即可求得玻尔兹曼常数斤。

在实际测量中,二极管的正向人”关系虽然能较好满足指数关系,但求得的常数斤往往偏小。

这是因为通过二极管电流不只是扩散电流,还有其它电流。

一般它包括三个部分:

[1]扩散电流,它严格遵循

(2)式;

[2]耗尽层复合电流,它正比于严2紋;

[3]表面电流,它是由Si和SiO2界面中杂质引起的,其值正比于严就r,—般ni>2o

因此,为了验证

(2)式及求出准确的常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。

复合电流主要在基极出现,测量集电极电流时,将不包括它。

本实验中选取性能良好的硅三极管(TIP31型),实验中乂处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足

(2)式。

实验线路如图1所示。

1234

图1PN结扩散电源与结电压关系测量线路图

2、弱电流测量

过去实验中10-6缶10」人量级弱电流采用光点反射式检流计测量,该仪器灵敬度较高约10-%/分度,但有许多不足之处。

如十分怕震,挂丝易断;使用时稍有不慎,光标易偏出满度,瞬间过载引起引丝疲劳变形产生不回零点及指示差变大。

使用和维修极不方便。

近年来,集成电路与数字化显示技术越来越普及。

高输入阻抗运算放大器性能优良,价格低廉,用它组成电流-电压变换器测量弱电流信号,具有输入阻抗低,电流灵敏度高。

温漂小、线性好、设计制作简单、结构牢靠等优点,因而被广泛应用于物理测量中。

LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。

其中虚线框内电阻乙为电流-电压变换器等效输入阻抗。

由图2可,运算放大器的输入电压U)为:

式(3)中U为输入电压,Ko为运算放大器的开环电压增益,即图2中电阻

Rl—8时的电压增益,Rf称反馈电阻。

因为理想运算放大器的输入阻抗门—8,所以信号源输入电流只流经反馈网络构成的通路。

因而有:

Is=(Ui-U)Rf=S(1+K。

)/心(4)

由(4)式可得电流-电压变换器等效输入阻抗乙为:

Z产UJIs=RJQ+KZRJK°(5)

山(3)式和⑷式可得电流-电压变换器输入电流Is输出电压U()之间得关系

式,即:

山(6)式只要测得输出电压Uo和已知&值,即可求得Is值。

以高输入阻抗集成运算放大器LF356为例来讨论乙和Is值得大小。

对LF356运放的开环增益/Co=2xlO5,输入阻抗r^lQnQ.若取尺为1.00MQ,则由(5)式可得:

Zr=1.00x106Q/(1+2x105)=50

若选用四位半量程200加V数字电压表,它最后一位变化为0.01/hV,那么用上述电流■电压变换器能显示最小电流值为:

(;5)niin=0.01/nV/1.00xl06Q=lxl0-,,A

山此说明,用集成运算放大器组成电流■电压变换器测量弱电流,具有输入阻抗小、灵敬度高的优点。

3、PN结的结电压卩缺与热力学温度T关系测量。

当PN结通过恒定小电流(通常电流I=1000PA),111半导体理论可得几与T近似关系:

Ube=ST+Uso(5)

式中S-~2.3mVrc为PN结温度传感器灵敬度。

\i]URo可求岀温度0K时半导体材料的近似禁带宽度E&S。

硅材料的几约为1.20W。

【实验内容与步骤】

(-)Id关系测定,并进行曲线拟合求经验公式,计算玻尔兹曼常数。

(—()

1、实验线路如图1所示(说明:

图中100Q的滑动变阻器和1.5H电源已经接入电路,只是1.5V稳压电源正输出没有接地,实验中只需将1.5H正输岀接地即可)。

图中3为三位半数字电压表,5为四位半数字电压表,TIP31型为带散热板的功率三极管,调节电压的分压器为多圈电位器。

为保持PN结与周围环境温度一致,把功率三极管连同散热器浸没在变压器油管中,油管下端插在保温杯中,保温杯内盛有室温水,变压器油温度用0-50°C(0.1°C)的水银温度计测量。

(为简单起见,本实验也可把功率三极管置于干井恒温器温度中,打开仪器的加热开关,按温度复位按钮,让仪器探测出环境温度,然后调节恒温控制到与室温相同即可。

2、在室温情况下,测量三极管发射极与基极之间电压3和相应电压6。

在常温下3的值约从0.3W至0.42"范圉每隔0.01V测一点数据,约测10多数据点,至5值达到饱和时(5值变化较小或基本不变),结束测量。

在记数据开始和记数据结束都要同时记录变压器油的温度&,取温度平均值歹。

3、改变干井恒温器温度,待PN结与油温湿度一致时,重复测量3和6的关系数据,并与室温测得的结果进行比较。

4、把⑵式改为-=RI严t,运用最小二乘法,将不同温度下采集的S〜S关系数据代入指数回归函数U.=aehu关系式中,算出指数函数相应的a和b的最佳值心和%,则由e/KTM。

、RI0=a()两式分别计算出玻尔兹曼常数K值和弱电流仏值,并说明玻尔兹曼分布的物理的含义。

已知玻尔兹曼常数公认值K°=1.381x10亠J/K,由此进而计算出玻尔兹曼常数测量的结果的白分误差。

5、曲线拟合求经验公式(此项内容为选做内容):

运用最小二乘法,将实验数据分别代入线性回归、指数回归、乘幕回归这三种常用的基本函数(它们是物理学中最常用的基本函数),然后求出衡量各回归程序好坏的标准差do对已测得的3和6各对数据,以3为自变量,6作因变量,分别代入:

(1)线性函数U2=aUl+b;

(2)乘幕函数U2=aUib;(3)指数函数g严。

求出各函数相应的"和b值,得出三种函数式,究竟哪一种函数符合物理规律必须用标准差来检验。

办法是:

把实验测得的各个自变量3分别代入三个基本函数,得到相应因变量的预期值5*,并山此求出各函数拟合的标准差:

式中〃为测量数据个数,弘为实验测得的因变量,为将自变量代入基本函数的因变量预期值,最后比较哪一种基本函数为标准差最小,说明该函数拟合得最好。

(二)U^-T关系测定,求PN结温度传感器灵敬度S,计算硅材料0K

时近似禁带宽度耳。

值(此项内容为选做内容)。

Rt_=31/

图3图4

1、实验线路如图3所示,测温电路如图4所示。

其中数字电压表V2通过双刀双向开关,既作测温电桥指零用,乂作监测PN结电流,保持电流1=100山\用。

2、通过调节图3电路中电源电压,使上电阻两端电压保持不变,即电流I=100屮\。

同时用电桥测量钳电阻心的电阻值,通过查钳电阻值与温度关系表,可得恒温器的实际湿度。

从室温开始每隔5°C-10°C测一定(7加值(即V/)与温度&(V)关系,求得U^-T关系。

(至少测6点以上数据)

3、用最小二乘法对Ube-T关系进行直线拟合,求出PN结测温灵敏度S

及近似求得温度为0K时硅材料禁带宽度Ero。

【注意事项】

1、数据处理时,对于扩散电流太小(起始状态)及扩散电流接近或达到饱和时的数据,在处理数据时应删去,因为这些数据可能偏离公式

(2)。

2、必须观测恒温装置上温度讣读数,待TIP31三极管温度处于恒定时(即处于热平衡时),才能记录5和5数据。

3、用本装置做实验,TIP31型三极管温度可采用的范围为0-50°Co若要在-120°C-0°C温度范围内做实验,必须有低温恒温装置。

4、山于各公司的运算放大器(LF356)性能有些差异,在换用LF356时,有可能同台仪器达到饱和电压6值不相同。

5、本仪器电源具有短路自动保护,运算放大器若151/接反或地线漏接,本仪器也有保护装置,一般情况集成电路不易损坏。

请勿将二极管保护装置拆除。

【数据记录及处理】

1、I(-Ube关系测定,曲线拟合求经验公式,计算玻尔兹曼常数。

室温条件下:

初温①=°C,末温&2=°C,0=°C

表1(%的起、终点要以具体的实验情况判断)

序号

1

2

3

1

5

6

7

8

Ui/V

0.310

0.320

0.330

0.340

0.350

0.360

0.370

0.380

U1JN

序号

9

10

11

12

13

14

15

U\/N

0.390

0.400

0.410

0.420

0.430

0.440

0.450

UiJN

以3为自变量,6为因变量,分别进行线性函数、乘幕函数和指数函数

的拟合,结果填入表2中:

表2

线性回归Ug5+b

乘泵回归gup

指数回归

n

[71/V

[/2/V

U2/V

(Ui-U^/V2

U1/V

(U2-U2)2/V2

U1/V

(U1-U1)2/V2

1

0.310

2

0.320

3

0.330

4

0.340

5

0.350

6

0.360

7

0.370

8

0.380

9

0.390

10

0.400

11

0.410

12

0.420

13

0.430

14

0.440

15

0.450

•••

•••

6

r

a、b

a=rb=

a=rb=

a=二

山表2数据处理后进行判断,线性函数、乘幕函数和指数函数的拟合哪一

种数据拟合最好,并山此说明PN结扩散电流■电圧关系遵循的分布规律。

计算玻尔兹曼常数:

由表2数据得

e/k

e/k=bT=CK/J

J/K

此结果与公认值k=1.381xlO-23丿/K进行比较。

2、电流1=100nA时,Uhe-T关系测定,求PN结温度传感器的灵敏度S,计算0K时硅材料的近似禁带宽度E豹。

表3Ube-T关系测定

0/°C

T/K

UJV

1

2

3

4

5

6

7

8

9

10

11

12

用计算器对t/快-T数据进行直线拟合得:

1)斜率,即传感器灵敬度$=mV/K;

2)截距U“二V(0K温度);

3)相关系数「=

4)禁带宽度=eU=eVo将此结果与硅在0K温度时禁带宽

度公认值耳。

=1.205eV相比较,看本实验测得的匕。

是否合理,并分析原因。

【思考题】

1、得到的数据一部分在线性区,一部分不在线性区,为什么?

拟合时应如

何注意取舍?

2、本实验把三极管接成共基极电路,测量结扩散电流与电压之间的关系,求玻尔兹曼常数,主要是为了消除哪些误差?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1