印制线路板设计经验点滴.docx

上传人:b****5 文档编号:8633904 上传时间:2023-02-01 格式:DOCX 页数:134 大小:217KB
下载 相关 举报
印制线路板设计经验点滴.docx_第1页
第1页 / 共134页
印制线路板设计经验点滴.docx_第2页
第2页 / 共134页
印制线路板设计经验点滴.docx_第3页
第3页 / 共134页
印制线路板设计经验点滴.docx_第4页
第4页 / 共134页
印制线路板设计经验点滴.docx_第5页
第5页 / 共134页
点击查看更多>>
下载资源
资源描述

印制线路板设计经验点滴.docx

《印制线路板设计经验点滴.docx》由会员分享,可在线阅读,更多相关《印制线路板设计经验点滴.docx(134页珍藏版)》请在冰豆网上搜索。

印制线路板设计经验点滴.docx

印制线路板设计经验点滴

混合信号PCB的分区设计

(一)

混合信号电路PCB的设计很难,零件的布局、布线以及电源和地线的处理将影响到电路性能和电磁相容性能。

本文介绍的地和电源的分区设计能最佳化混合信号电路的性能。

  如何降低数字信号和模拟信号的相互干扰呢?

在设计之前必须了解电磁相容(EMC)的两个基本原则:

第一个原则是尽可能降低电流回路的面积;第二个原则是系统只采取一个参考面。

相反如果系统存在两个参考面,就有可能形成一个偶极天线(注:

小型偶极天线的辐射大小与线的长度,流过电流的大小的频率成正比);而如果信号不能由尽可能小的环路返回,就有可能形成一个大的环状天线(注:

大型环状天线的辐射大小与环路面积,流过环路的电流大小及频率的平方成正比)。

在设计中要尽可能避免这两种情况。

有人建议将混合信号电路板上的数字地和模拟地分开,这样能实现数字地与模拟地之间的隔离。

尽管这种方法可行,但是存在很多潜在的问题,在复杂的大系统中问题尤其突出。

一旦跨越分割间隙布线,电磁辐射和信号串扰会急剧增加。

在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。

如图1所示,我们采用上述分割方法,而且信号线跨越了两地间的间隙,信号返回的路径是什么呢?

假定被分割的两个地在某处连在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将形成一个大的环路,流经大环路的高频电流会产生辐射和很高的地电感,如果流过环路的是低电平模拟电流,该电流很容易受到外部信号干扰。

最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。

另外,模拟地和数字地由一个长导线连接在一起会构成偶极天线。

了解电流回流到地的路径和方式是最佳化混合信号电路板设计的关键。

许多设计工程师仅仅考虑信号流从何处流过,而忽略了电流的具体的路径。

如果必须对地线层进行分割,而且必须由分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后由该连接桥布线。

这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。

  采用光隔离元件或变压器也能实现信号跨越分割间隙。

对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。

还有一种可行的方法是采用差分信号:

信号从一条线流入从另一条信号线返回,这种情况下,不需要地作为回流路径。

  要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。

高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个邻近层是电源层还是地线层。

  在实际工作中一般使用统一地,而将PCB分区为模拟信号部分和数字信号部分。

模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。

在这种情况下,数字信号返回电流不会流入到模拟信号的地方。

只有将数字信号布在电路板的模拟信号部分或者将模拟信号布线在数字信号部分上时,才会出现数字信号对模拟信号的干扰。

出现这种问题并不是因为没有分割地,真正的原因是数字信号的布线不适当。

 PCB设计采用统一地,由数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。

在这种情况下,零件的布局的分区就成为决定设计优劣的关键。

如果零件布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟信号。

对于这样的布线必须仔细检查和核对,要保证百分之百遵守布线规则。

否则,一条信号线走线不当就会破坏一个设计优良的电路板。

混合信号PCB的分区设计

(二)

在将A/D转换器的模拟地和数字地管脚连接在一起时,大多数的A/D转换器厂商会建议:

将GND和DGND管脚由最短的引线连接到同一个低阻抗的地上(注:

因为大多数A/D转换器晶片内部没有将模拟地和数字地连接在一起,必须由外部管脚实现模拟地和数字地的连接),任何与DGND连接的外部阻抗都会由寄生电容将更多的数位噪声耦合至IC内部的模拟电路上。

按照这个建议,需要的A/D转换器的AGND和DGND管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦电容的接地端应该接到数字地还是模拟地的问题。

如果系统仅有一个A/D转换器,上面的问题就很容易解决。

如图3所示,将地分割开,在A/D转换器的下面把模拟地和数字地部分连接在一起。

采取这种方法时,必须保证两个地之间的连接桥宽度与IC等宽,并且任何信号线都不能跨越分割间隙。

如果系统中A/D转换器较多,例如10个A/D转换器怎么连接呢?

如果在每一个A/D转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意义。

而如果不这样连接,就违返了厂商的要求。

最好的方法是开始时就用统一地,如图4所示,将统一的地分为模拟部分和数字部分。

这样的布局布线既满足了IC元件厂商对模拟地和数字地管脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线而产生EMC问题。

  如果对混合信号PCB设计采用统一地的做法心存疑问,可以采用地线层分割的方法对整个电路板布局布线,在设计注意尽量使电路板在后边实验时易用间距小于1/2英寸的跳线或0欧姆电阻将分割地连接在一起。

  注意分区和布线,确保在所有的层上没有数字信号线位于模拟信号部分,也没有任何模拟信号位于数字部分。

而且,任何信号都不能跨越地间隙或是分割电源之间的间隙。

要测试该电路板的功能和EMC功能,然后将两个地由0欧姆电阻或跳线连接在一起,重新测试该电路板的功能和EMC功能。

比较测试结果,会发现几乎在所有的情况下,统一地的方案在功能和EMC性能方面比分割地更优越。

  分割地的方法还有吗?

  在以下三种情况可以用到这种方法:

  一些医疗设备要求在与病人连接的电路和系统之间的漏电流很低;

  一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;

  另外一种情况就是在PCB的布局受到特定限制时。

  在混合信号PCB板上通常有独立的数字和模拟电源,能够而且应该采用分割电源面。

但是紧邻电源层的信号线不能跨越电源之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积的电路层上。

  在有些情况下,将模拟电源以PCB连接线而不是一个面来设计可以避免电源面的分割问题。

混合信号PCB设计是一个复杂的过程,设计过程要注意以下几点:

  1、将PCB分区为独立的模拟部分和数字部分。

  2、合适的零件布局。

  3、A/D转换器跨分区放置。

  4、不要对地进行分割。

在电路板的模拟部分和数字部分下面设统一地。

  5、在电路板的所有层中,数字信号只能在电路板的数字部分布线,模拟信号只能在电路板的模拟部分布线。

  6、实现模拟类比和数字电源分割。

  7、布线不能跨越分割电源面之间的间隙。

  8、必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上。

  9、分析返回地电流实际流过的路径和方式。

  10、采用正确的布线规则。

印制线路板设计经验点滴

对于电子产品来说,印制线路板设计是其从电原理图变成一个具体产品必经的一道设计工序,其设计的合理性与产品生产及产品质量紧密相关,而对于许多刚从事电子设计的人员来说,在这方面经验较少,虽然已学会了印制线路板设计软件,但设计出的印制线路板常有这样那样的问题,而许多电子刊物上少有这方面文章介绍,笔者曾多年从事印制线路板设计的工作,在此将印制线路板设计的点滴经验与大家分享,希望能起到抛砖引玉的作用。

笔者的印制线路板设计软件早几年是TANGO,现在则使用PROTEL2.7FORWINDOWS。

板的布局:

1.印制线路板上的元器件放置的通常顺序:

1)放置与结构有紧密配合的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动;

2)放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等;

3)放置小器件。

2.元器件离板边缘的距离:

可能的话所有的元器件均放置在离板的边缘3mm以内或至少大于板厚,这是由于在大批量生产的流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也为了防止由于外形加工引起边缘部分的缺损,如果印制线路板上元器件过多,不得已要超出3mm范围时,可以在板的边缘加上3mm的辅边,辅边开V形槽,在生产时用手掰断即可。

3.高低压之间的隔离:

在许多印制线路板上同时有高压电路和低压电路,高压电路部分的元器件与低压部分要分隔开放置,隔离距离与要承受的耐压有关,通常情况下在2000kV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3000V的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。

印制线路板的走线:

1.印制导线的布设应尽可能的短,在高频回路中更应如此;印制导线的拐弯应成圆角,而直角或尖角在高频电路和布线密度高的情况下会影响电气性能;当两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输入及输出用的印制导线应尽量避免相邻平行,以免发生回授,在这些导线之间最好加接地线。

2.印制导线的宽度:

导线宽度应以能满足电气性能要求而又便于生产为宜,它的最小值以承受的电流大小而定,但最小不宜小于0.2mm,在高密度、高精度的印制线路中,导线宽度和间距一般可取0.3mm;导线宽度在大电流情况下还要考虑其温升,单面板实验表明,当铜箔厚度为50μm、导线宽度1~1.5mm、通过电流2A时,温升很小,因此,一般选用1~1.5mm宽度导线就可能满足设计要求而不致引起温升;印制导线的公共地线应尽可能地粗,可能的话,使用大于2~3mm的线条,这点在带有微处理器的电路中尤为重要,因为当地线过细时,由于流过的电流的变化,地电位变动,微处理器定时信号的电平不稳,会使噪声容限劣化;在DIP封装的IC脚间走线,可应用10-10与12-12原则,即当两脚间通过2根线时,焊盘直径可设为50mil、线宽与线距都为10mil,当两脚间只通过1根线时,焊盘直径可设为64mil、线宽与线距都为12mil。

3.印制导线的间距:

相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

最小间距至少要能适合承受的电压。

这个电压一般包括工作电压、附加波动电压以及其它原因引起的峰值电压。

如果有关技术条件允许导线之间存在某种程度的金属残粒,则其间距就会减小。

因此设计者在考虑电压时应把这种因素考虑进去。

在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距。

4.印制导线的屏蔽与接地:

印制导线的公共地线,应尽量布置在印制线路板的边缘部分。

在印制线路板上应尽可能多地保留铜箔做地线,这样得到的屏蔽效果,比一长条地线要好,传输线特性和屏蔽作用将得到改善,另外起到了减小分布电容的作用。

印制导线的公共地线最好形成环路或网状,这是因为当在同一块板上有许多集成电路,特别是有耗电多的元件时,由于图形上的限制产生了接地电位差,从而引起噪声容限的降低,当做成回路时,接地电位差减小。

另外,接地和电源的图形尽可能要与数据的流动方向平行,这是抑制噪声能力增强的秘诀;多层印制线路板可采取其中若干层作屏蔽层,电源层、地线层均可视为屏蔽层,一般地线层和电源层设计在多层印制线路板的内层,信号线设计在内层和外层。

焊盘:

1.焊盘的直径和内孔尺寸:

焊盘的内孔尺寸必须从元件引线直径和公差尺寸以及搪锡层厚度、孔径公差、孔金属化电镀层厚度等方面考虑,焊盘的内孔一般不小于0.6mm,因为小于0.6mm的孔开模冲孔时不易加工,通常情况下以金属引脚直径值加上0.2mm作为焊盘内孔直径,如电阻的金属引脚直径为0.5mm时,其焊盘内孔直径对应为0.7mm,焊盘直径取决于内孔直径,如下表:

孔直径(mm)

0.4

0.5

0.6

0.8

1.0

1.2

1.6

2.0

焊盘直径(mm)

1.5

1.5

2

2.5

3.0

3.5

4

1.当焊盘直径为1.5mm时,为了增加焊盘抗剥强度,可采用长不小于1.5mm,宽为1.5mm和长圆形焊盘,此种焊盘在集成电路引脚焊盘中最常见。

2.对于超出上表范围的焊盘直径可用下列公式选取:

直径小于0.4mm的孔:

D/d=0.5~3

直径大于2mm的孔:

D/d=1.5~2

式中:

(D-焊盘直径,d-内孔直径)

有关焊盘的其它注意点:

1.焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

2.焊盘的开口:

有些器件是在经过波峰焊后补焊的,但由于经过波峰焊后焊盘内孔被锡封住,使器件无法插下去,解决办法是在印制板加工时对该焊盘开一小口,这样波峰焊时内孔就不会被封住,而且也不会影响正常的焊接。

3.焊盘补泪滴:

当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

相邻的焊盘要避免成锐角或大面积的铜箔,成锐角会造成波峰焊困难,而且有桥接的危险,4.大面积铜箔因散热过快会导致不易焊接。

大面积敷铜:

印制线路板上的大面积敷铜常用于两种作用,一种是散热,一种用于屏蔽来减小干扰,初学者设计印制线路板时常犯的一个错误是大面积敷铜上没有开窗口,而由于印制线路板板材的基板与铜箔间的粘合剂在浸焊或长时间受热时,会产生挥发性气体无法排除,热量不易散发,以致产生铜箔膨胀,脱落现象。

因此在使用大面积敷铜时,应将其开窗口设计成网状。

跨接线的使用:

在单面的印制线路板设计中,有些线路无法连接时,常会用到跨接线,在初学者中,跨接线常是随意的,有长有短,这会给生产上带来不便。

放置跨接线时,其种类越少越好,通常情况下只设6mm,8mm,10mm三种,超出此范围的会给生产上带来不便。

板材与板厚:

印制线路板一般用覆箔层压板制成,常用的是覆铜箔层压板。

板材选用时要从电气性能、可靠性、加工工艺要求、经济指标等方面考虑,常用的覆铜箔层压板有覆铜箔酚醛纸质层压板、覆铜箔环氧纸质层压板、覆铜箔环氧玻璃布层压板、覆铜箔环氧酚醛玻璃布层压板、覆铜箔聚四氟乙烯玻璃布层压板和多层印制线路板用环氧玻璃布等。

由于环氧树脂与铜箔有极好的粘合力,因此铜箔的附着强度和工作温度较高,可以在260℃的熔锡中浸焊而无起泡。

环氧树脂浸渍的玻璃布层压板受潮湿的影响较小。

超高频印制线路最优良的材料是覆铜箔聚四氟乙烯玻璃布层压板。

在有阻燃要求的电子设备上,还要使用阻燃性覆铜箔层压板,其原理是由绝缘纸或玻璃布浸渍了不燃或难燃性的树脂,使制得的覆铜箔酚醛纸质层压板、覆铜箔环氧纸质层压板、覆铜箔环氧玻璃布层压板、覆铜箔环氧酚醛玻璃布层压板,除了具有同类覆铜箔层压板的相拟性能外,还有阻燃性。

印制线路板的厚度应根据印制板的功能及所装元件的重量、印制板插座规格、印制板的外形尺寸和所承受的机械负荷来决定。

多层印制板总厚度及各层间厚度的分配应根据电气和结构性能的需要以及覆箔板的标准规格来选取。

常见的印制线路板厚度有0.5mm、1mm、1.5mm、2mm等。

印制电路板的可靠性设计—地线设计

目前电子器材用于各类电子设备和系统仍然以印制电路板为主要装配方式。

实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。

例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。

因此,在设计印制电路板的时候,应注意采用正确的方法。

  地线设计

  在电子设备中,接地是控制干扰的重要方法。

如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。

电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。

在地线设计中应注意以下几点:

1.正确选择单点接地与多点接地

在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。

当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。

当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。

2.将数字电路与模拟电路分开

电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。

要尽量加大线性电路的接地面积。

3.尽量加粗接地线

若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。

因此应将接地线尽量加粗,使它能通过三位于印制电路板的允许电流。

如有可能,接地线的宽度应大于3mm。

4.将接地线构成闭环路

设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。

其原因在于:

印制电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。

印制电路板的可靠性设计—去耦电容配置

在直流电源回路中,负载的变化会引起电源噪声。

例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:

  ●电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

  ●为每个集成电路芯片配置一个0.01uF的陶瓷电容器。

如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

  ●对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

●去耦电容的引线不能过长,特别是高频旁路电容不能带引线。

印制电路板设计原则和抗干扰措施

印制电路板(PCB)是电子产品中电路元件和器件的支撑件。

它提供电路元件和器件之间的电气连接。

随着电于技术的飞速发展,PGB的密度越来越高。

PCB设计的好坏对抗干扰能力影响很大。

因此,在进行PCB设计时。

必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

  PCB设计的一般原则要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。

为了设计质量好、造价低的PCB。

应遵循以下一般原则:

  1.布局首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB尺寸后。

再确定特殊元件的位置。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

在确定特殊元件的位置时要遵守以下原则:

  

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

  

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。

带高电压的元器件应尽量布置在调试时手不易触及的地方。

  (3)重量超过15g的元器件、应当用支架加以固定,然后焊接。

那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。

热敏元件应远离发热元件。

  (4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。

若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

  (5)应留出印制扳定位孔及固定支架所占用的位置。

根据电路的功能单元。

对电路的全部元器件进行布局时,要符合以下原则:

  1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

  2)以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地排列在PCB上。

尽量减少和缩短各元器件之间的引线和连接。

  3)在高频下工作的电路,要考虑元器件之间的分布参数。

一般电路应尽可能使元器件平行排列。

这样,不但美观。

而且装焊容易。

易于批量生产。

  4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

电路板的最佳形状为矩形。

长宽比为3:

2成4:

3。

电路板面尺寸大于200x150mm时。

应考虑电路板所受的机械强度。

  2。

布线布线的原则如下;

  

(1)输入输出端用的导线应尽量避免相邻平行。

最好加线间地线,以免发生反馈藕合。

  

(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。

当铜箔厚度为0.05mm、宽度为1~15mm时。

通过2A的电流,温度不会高于3℃,因此。

导线宽度为1.5mm可满足要求。

对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。

当然,只要允许,还是尽可能用宽线。

尤其是电源线和地线。

导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。

对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

  (3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。

此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。

必须用大面积铜箔时,最好用栅格状。

这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

  3.焊盘焊盘中心孔要比器件引线直径稍大一些。

焊盘太大易形成虚焊。

焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。

对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

  

(1)电源线设计根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。

同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

  

(2)地段设计地线设计的原则是:

   1)数字地与模拟地分开。

若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。

低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。

高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。

   2)接地线应尽量加粗。

若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。

因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。

如有可能,接地线应在2~3mm以上。

   3)接地线构成闭环路。

只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

  (3)退藕电容配置PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

   1)电源输入端跨接10~100uf的电解电容器。

如有可能,接100uF以上的更好。

   2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1~10pF的但电容。

   3)对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

   4)电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

   在印制板中有接触器、继电器、按钮等元件时。

操作它们时均会产生较大火花放电,必须采用附图所示的RC电路来吸收放电电流。

一般R取1~2K,C取2.2~47UF。

   CMOS

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1